Skip to main content

Advertisement

Log in

Life-style-induced metabolic derangement and epigenetic changes promote diabetes and oxidative stress leading to NASH and atherosclerosis severity

  • Review Article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Energy imbalance resulting from high calorie food intake and insufficient metabolic activity leads to increased body mass index (BMI) and sets the stage for metabolic derangement influencing lipid and carbohydrate metabolism and ultimately leading to insulin resistance, dyslipidemia, and type 2 diabetes. 70% of cardiovascular disease (CVD) deaths occur in patients with diabetes. Environment-induced physiological perturbations trigger epigenetic changes through chromatin modification and leads to type 2 diabetes and progression of nonalcoholic fatty liver disease (NAFLD) and CVD. Thus, in terms of disease progression and pathogenesis, energy homeostasis, metabolic dysregulation, diabetes, fatty liver, and CVD are interlinked. Since advanced glycation end products (AGEs) and low-grade inflammation in type 2 diabetes play definitive roles in the pathogenesis of liver and vascular diseases, a natural checkpoint to prevent diabetes and associated complications appears to be the identification and management of prediabetes together with weight management, since 70% of prediabetic individuals develop diabetes during their life time, and every kg of weight increase is associated with up to 9% increase in diabetes risk. A good proportion of diabetes and obesity population have fatty liver that progresses to non-alcoholic steatohepatitis (NASH) and cirrhosis, and increased risk of hepatocellular carcinoma. Diabetes and NASH both have elevated oxidative stress, impaired cholesterol elimination, and increased inflammation that leads to CVD risk. This review addresses life-style-induced metabolic pathway derangement and how it contributes to epigenetic changes, type 2 diabetes and NASH progression, which collectively lead to increased risk of CVD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

VLDL:

very low-density lipoprotein

LDL:

low-density lipoprotein

HDL:

high-density lipoprotein

CVD:

cardiovascular disease

NAFLD:

non-alcoholic fatty liver disease

AGE:

advanced glycation end-products

NASH:

non-alcoholic steatohepatitis

MetS:

metabolic syndrome

apoA-I:

apolipoprotein A-I

BMI:

body mass index

miR:

micro RNA

COPD:

chronic obstructive pulmonary disease

HAT:

histone deacetylase

HDAC:

histone acetyl transferase

T2DM:

type 2 diabetes mellitus

VSMC:

Vascular smooth muscle cells

MCP1:

monocyte chemoattractant protein 1

LSD-1:

lysine-specific demethylase

VCAM1:

vascular cell adhesion molecule 1

NF-κB:

nuclear factor kappa B

Cox2:

cyclooxygenase 2

TNF-α:

tumor necrosis factor-α

FXR:

farnesoid X receptor

TRL:

triglyceride-rich lipoproteins

RCT:

reverse cholesterol transport

SR-BI:

scavenger receptor class B type 1

ABCA1:

ATP binding cassette transporter 1

HbA1c:

hemoglobin A1c

RAGE:

receptor for advanced glycation end-products

References

  1. Cavan DHJ, Linnenkamp U, Makaroff L, Magliano D, Ogurtrstova K, Shaw J. Diabetes and cardiovascular disease. International Diabetes Federation 2016;1–12. http://www.idforg/cvd. Accessed 9 Aug 2018.

  2. Feingold KR, Grunfeld C. Obesity and dyslipidemia. In: De Groot LJ, Chrousos G, Dungan K, et al., editors. Endotext. South Dartmouth (MA): MDText.com, Inc., 2000. Acessed 10 April 2018.

  3. Srivastava RA, Srivastava N. Search for obesity drugs: targeting central and peripheral pathways. Curr Med Chem Immunol Endocr Metab Agents. 2004;4:75–90.

    Article  CAS  Google Scholar 

  4. Kaur J. A comprehensive review on metabolic syndrome. Cardiol Res Pract. 2014;2014:943162.

    PubMed  PubMed Central  Google Scholar 

  5. Zafar U, Khaliq S, Ahmad HU, Manzoor S, Lone KP. Metabolic syndrome: an update on diagnostic criteria, pathogenesis, and genetic links. Hormones (Athens, Greece). 2018;17:299–313.

    Article  Google Scholar 

  6. Davidson MH, Bays HE, Stein E, Maki KC, Shalwitz RA, Doyle R. Effects of fenofibrate on atherogenic dyslipidemia in hypertriglyceridemic subjects. Clin Cardiol. 2006;29:268–73.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Riserus U, Sprecher D, Johnson T, Olson E, Hirschberg S, Liu A, et al. Activation of peroxisome proliferator-activated receptor (PPAR)delta promotes reversal of multiple metabolic abnormalities, reduces oxidative stress, and increases fatty acid oxidation in moderately obese men. Diabetes. 2008;57:332–9.

    Article  CAS  PubMed  Google Scholar 

  8. Kawakami A, Yoshida M. Apolipoprotein CIII links dyslipidemia with atherosclerosis. J Atheroscler Thromb. 2009;16:6–11.

    Article  CAS  PubMed  Google Scholar 

  9. Toth PP. Triglyceride-rich lipoproteins as a causal factor for cardiovascular disease. Vasc Health Risk Manag. 2016;12:171–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nordestgaard BG. Triglyceride-rich lipoproteins and atherosclerotic cardiovascular disease: new insights from epidemiology, genetics, and biology. Circ Res. 2016;118:547–63.

    Article  CAS  PubMed  Google Scholar 

  11. Hirano T. Pathophysiology of diabetic dyslipidemia. J Atheroscler Thromb. 2018;25:771–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Moller DE, Kaufman KD. Metabolic syndrome: a clinical and molecular perspective. Annu Rev Med. 2005;56:45–62.

    Article  CAS  PubMed  Google Scholar 

  13. Oorni K, Lehti S, Sjovall P, Kovanen PT. Triglyceride-rich lipoproteins as a source of proinflammatory lipids in the arterial wall. Curr Med Chem. 2018

  14. Boullart AC, de Graaf J, Stalenhoef AF. Serum triglycerides and risk of cardiovascular disease. Biochim Biophys Acta. 2012;1821:867–75.

    Article  CAS  PubMed  Google Scholar 

  15. Al-Zakwani I, Sulaiman K, Al-Rasadi K, Mikhailidis DP. Prevalence of low high-density lipoprotein cholesterol (HDL-C) as a marker of residual cardiovascular risk among acute coronary syndrome patients from Oman. Curr Med Res Opin. 2011;27:879–85.

    Article  CAS  PubMed  Google Scholar 

  16. Sniderman AD, Faraj M. Apolipoprotein B, apolipoprotein A-I, insulin resistance and the metabolic syndrome. Curr Opin Lipidol. 2007;18:633–7.

    Article  CAS  PubMed  Google Scholar 

  17. Pietzsch J, Julius U, Nitzsche S, Hanefeld M. In vivo evidence for increased apolipoprotein A-I catabolism in subjects with impaired glucose tolerance. Diabetes. 1998;47:1928–34.

    Article  CAS  PubMed  Google Scholar 

  18. Hossain P, Kawar B, El Nahas M. Obesity and diabetes in the developing world--a growing challenge. N Engl J Med. 2007;356:213–5.

    Article  CAS  PubMed  Google Scholar 

  19. Srivastava RA, Pinkosky SL, Filippov S, Hanselman JC, Cramer CT, Newton RS. AMP-activated protein kinase: an emerging drug target to regulate imbalances in lipid and carbohydrate metabolism to treat cardio-metabolic diseases. J Lipid Res. 2012;53:2490–514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Poirier P, Giles TD, Bray GA, Hong Y, Stern JS, Pi-Sunyer FX, et al. Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation. 2006;113:898–918.

    Article  PubMed  Google Scholar 

  21. Goran MI, Ball GD, Cruz ML. Obesity and risk of type 2 diabetes and cardiovascular disease in children and adolescents. J Clin Endocrinol Metab. 2003;88:1417–27.

    Article  CAS  PubMed  Google Scholar 

  22. Koh-Banerjee P, Wang Y, Hu FB, Spiegelman D, Willett WC, Rimm EB. Changes in body weight and body fat distribution as risk factors for clinical diabetes in US men. Am J Epidemiol. 2004;159:1150–9.

    Article  PubMed  Google Scholar 

  23. Menke A, Casagrande S, Geiss L, Cowie CC. Prevalence of and trends in diabetes among adults in the United States, 1988–2012. Jama. 2015;314:1021–9.

    Article  CAS  PubMed  Google Scholar 

  24. Yates T, Khunti K, Troughton J, Davies M. The role of physical activity in the management of type 2 diabetes mellitus. Postgrad Med J. 2009;85:129–33.

    Article  CAS  PubMed  Google Scholar 

  25. Eckel RH. CVD health factors and CVD risk factors: state of the science, emerging priorities part 2: obesity prevention. Ethn Dis. 2012;22:S1–36–40.

    Google Scholar 

  26. Muoio DM, Newgard CB. Obesity-related derangements in metabolic regulation. Annu Rev Biochem. 2006;75:367–401.

    Article  CAS  PubMed  Google Scholar 

  27. Mooradian AD, Haas MJ, Wehmeier KR, Wong NC. Obesity-related changes in high-density lipoprotein metabolism. Obesity (Silver Spring). 2008;16:1152–60.

    Article  CAS  Google Scholar 

  28. Ooi EM, Watts GF, Farvid MS, et al. High-density lipoprotein apolipoprotein A-I kinetics in obesity. Obes Res. 2005;13:1008–16.

    Article  CAS  PubMed  Google Scholar 

  29. Basciano H, Miller AE, Naples M, Baker C, Kohen R, Xu E, et al. Metabolic effects of dietary cholesterol in an animal model of insulin resistance and hepatic steatosis. Am J Phys Endocrinol Metab. 2009;297:E462–73.

    Article  CAS  Google Scholar 

  30. Srivastava RA, He S. Anti-hyperlipidemic and insulin sensitizing activities of fenofibrate reduces aortic lipid deposition in hyperlipidemic Golden Syrian hamster. Mol Cell Biochem. 2010;345:197–206.

    Article  CAS  PubMed  Google Scholar 

  31. Stanhope KL, Schwarz JM, Havel PJ. Adverse metabolic effects of dietary fructose: results from the recent epidemiological, clinical, and mechanistic studies. Curr Opin Lipidol. 2013;24:198–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Anjana RM, Pradeepa R, Deepa M, et al. Prevalence of diabetes and prediabetes (impaired fasting glucose and/or impaired glucose tolerance) in urban and rural India: phase I results of the Indian Council of Medical Research-INdia DIABetes (ICMR-INDIAB) study. Diabetologia. 2011;54:3022–7.

    Article  CAS  PubMed  Google Scholar 

  33. Mohan V, Deepa M, Deepa R, Shanthirani CS, Farooq S, Ganesan A, et al. Secular trends in the prevalence of diabetes and impaired glucose tolerance in urban South India--the Chennai urban rural epidemiology study (CURES-17). Diabetologia. 2006;49:1175–8.

    Article  CAS  PubMed  Google Scholar 

  34. Xu Y, Wang L, He J, Bi Y, Li M, Wang T, et al. Prevalence and control of diabetes in Chinese adults. Jama. 2013;310:948–59.

    Article  CAS  PubMed  Google Scholar 

  35. Wang L, Gao P, Zhang M, Huang Z, Zhang D, Deng Q, et al. Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013. Jama. 2017;317:2515–23.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bird A. Perceptions of epigenetics. Nature. 2007;447:396–8.

    Article  CAS  PubMed  Google Scholar 

  37. Chambon P. Determination of the organization of coding and intervening sequences in the chicken ovalbumin split gene. Differentiation. 1979;13:43–4.

  38. Crick F. Split genes and RNA splicing. Science (New York, NY). 1979;204:264–71.

    Article  CAS  Google Scholar 

  39. Hardy T, Mann DA. Epigenetics in liver disease: from biology to therapeutics. Gut. 2016;65:1895–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Khullar M, Cheema BS, Raut SK. Emerging evidence of epigenetic modifications in vascular complication of diabetes. Front Endocrinol. 2017;8:237.

    Article  Google Scholar 

  41. Clouaire T, Stancheva I. Methyl-CpG binding proteins: specialized transcriptional repressors or structural components of chromatin? Cell Mol Life Sc. 2008;65:1509–22.

  42. Patra SK, Patra A, Rizzi F, Ghosh TC, Bettuzzi S. Demethylation of (Cytosine-5-C-methyl) DNA and regulation of transcription in the epigenetic pathways of cancer development. Cancer Metastasis Rev. 2008;27:315–34.

    Article  CAS  PubMed  Google Scholar 

  43. Marmorstein R, Trievel RC. Histone modifying enzymes: structures, mechanisms, and specificities. Biochim Biophys Acta. 2009;1789:58–68.

    Article  CAS  PubMed  Google Scholar 

  44. Kouzarides T. Chromatin modifications and their function. Cell. 2007;128:693–705.

    Article  CAS  PubMed  Google Scholar 

  45. Avvakumov N, Cote J. The MYST family of histone acetyltransferases and their intimate links to cancer. Oncogene. 2007;26:5395–407.

    Article  CAS  PubMed  Google Scholar 

  46. Haberland M, Montgomery RL, Olson EN. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet. 2009;10:32–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jayaraman S. Epigenetic mechanisms of metabolic memory in diabetes. Circ Res. 2012;110:1039–41.

    Article  CAS  PubMed  Google Scholar 

  48. El-Osta A, Brasacchio D, Yao D, et al. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J Exp Med. 2008;205:2409–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wren JD, Garner HR. Data-mining analysis suggests an epigenetic pathogenesis for type 2 diabetes. J Biomed Biotechnol. 2005;2005:104–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Parrizas M, Maestro MA, Boj SF, Paniagua A, Casamitjana R, Gomis R, et al. Hepatic nuclear factor 1-alpha directs nucleosomal hyperacetylation to its tissue-specific transcriptional targets. Mol Cell Biol. 2001;21:3234–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Francis J, Chakrabarti SK, Garmey JC, Mirmira RG. Pdx-1 links histone H3-Lys-4 methylation to RNA polymerase II elongation during activation of insulin transcription. J Biol Chem. 2005;280:36244–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mosley AL, Ozcan S. The pancreatic duodenal homeobox-1 protein (Pdx-1) interacts with histone deacetylases Hdac-1 and Hdac-2 on low levels of glucose. J Biol Chem. 2004;279:54241–7.

    Article  CAS  PubMed  Google Scholar 

  53. Ozcan S. Minireview: microRNA function in pancreatic beta cells. Mol Endocrinol. 2014;28:1922–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mosley AL, Ozcan S. Glucose regulates insulin gene transcription by hyperacetylation of histone h4. J Biol Chem. 2003;278:19660–6.

    Article  CAS  PubMed  Google Scholar 

  55. Chakrabarti SK, Francis J, Ziesmann SM, Garmey JC, Mirmira RG. Covalent histone modifications underlie the developmental regulation of insulin gene transcription in pancreatic beta cells. J Biol Chem. 2003;278:23617–23.

    Article  CAS  PubMed  Google Scholar 

  56. Villeneuve LM, Reddy MA, Lanting LL, Wang M, Meng L, Natarajan R. Epigenetic histone H3 lysine 9 methylation in metabolic memory and inflammatory phenotype of vascular smooth muscle cells in diabetes. Proc Natl Acad Sci U S A. 2008;105:9047–52.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Reddy MA, Villeneuve LM, Wang M, Lanting L, Natarajan R. Role of the lysine-specific demethylase 1 in the proinflammatory phenotype of vascular smooth muscle cells of diabetic mice. Circ Res. 2008;103:615–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Li Y, Reddy MA, Miao F, Shanmugam N, Yee JK, Hawkins D, et al. Role of the histone H3 lysine 4 methyltransferase, SET7/9, in the regulation of NF-kappaB-dependent inflammatory genes. Relevance to diabetes and inflammation. J Biol Chem. 2008;283:26771–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Miao F, Gonzalo IG, Lanting L, Natarajan R. In vivo chromatin remodeling events leading to inflammatory gene transcription under diabetic conditions. J Biol Chem. 2004;279:18091–7.

    Article  CAS  PubMed  Google Scholar 

  60. Jones Buie JN, Goodwin AJ, Cook JA, Halushka PV, Fan H. The role of miRNAs in cardiovascular disease risk factors. Atherosclerosis. 2016;254:271–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Aguilar-Olivos NE, Oria-Hernandez J, Ponciano-Rodriguez G, Chavez-Tapia NC, Uribe M, Mendez-Sanchez N. The role of epigenetics in the progression of non-alcoholic fatty liver disease. Mini Rev Med Chem. 2015;15:1187–94.

    Article  CAS  PubMed  Google Scholar 

  62. Srivastava RAK. Dysfunctional HDL in diabetes mellitus and its role in the pathogenesis of cardiovascular disease. Mol Cell Biochem. 2018;440:167–87.

    Article  CAS  PubMed  Google Scholar 

  63. Tabak AG, Herder C, Rathmann W, Brunner EJ, Kivimaki M. Prediabetes: a high-risk state for diabetes development. Lancet. 2012;379:2279–90.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ramachandran A, Snehalatha C, Mary S, Mukesh B, Bhaskar AD, Vijay V. The Indian Diabetes Prevention Programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1). Diabetologia. 2006;49:289–97.

    Article  CAS  PubMed  Google Scholar 

  65. Asgharpour A, Cazanave SC, Pacana T, Seneshaw M, Vincent R, Banini BA, et al. A diet-induced animal model of non-alcoholic fatty liver disease and hepatocellular cancer. J Hepatol. 2016;65:579–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Anstee QM, Targher G, Day CP. Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat Rev Gastroenterol Hepatol. 2013;10:330–44.

    Article  CAS  PubMed  Google Scholar 

  67. Datz C, Muller E, Aigner E. Iron overload and non-alcoholic fatty liver disease. Minerva Endocrinol. 2017;42:173–83.

    PubMed  Google Scholar 

  68. Carr RM, Oranu A, Khungar V. Nonalcoholic fatty liver disease: pathophysiology and management. Gastroenterol Clin N Am. 2016;45:639–52.

    Article  Google Scholar 

  69. Higashi T, Friedman SL, Hoshida Y. Hepatic stellate cells as key target in liver fibrosis. Adv Drug Deliv Rev. 2017;121:27–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dai W, Ye L, Liu A, Wen SW, Deng J, Wu X, et al. Prevalence of nonalcoholic fatty liver disease in patients with type 2 diabetes mellitus: a meta-analysis. Medicine. 2017;96:e8179.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Ratziu V, Bellentani S, Cortez-Pinto H, Day C, Marchesini G. A position statement on NAFLD/NASH based on the EASL 2009 special conference. J Hepatol. 2010;53:372–84.

    Article  PubMed  Google Scholar 

  72. Hazlehurst JM, Woods C, Marjot T, Cobbold JF, Tomlinson JW. Non-alcoholic fatty liver disease and diabetes. Metab Clin Exp. 2016;65:1096–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Vernon G, Baranova A, Younossi ZM. Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment Pharmacol Ther. 2011;34:274–85.

    Article  CAS  PubMed  Google Scholar 

  74. Brownlee M. Advanced protein glycosylation in diabetes and aging. Annu Rev Med. 1995;46:223–34.

    Article  CAS  PubMed  Google Scholar 

  75. Singh R, Barden A, Mori T, Beilin L. Advanced glycation end-products: a review. Diabetologia. 2001;44:129–46.

    Article  CAS  PubMed  Google Scholar 

  76. Basta G, Schmidt AM, De Caterina R. Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes. Cardiovasc Res. 2004;63:582–92.

    Article  CAS  PubMed  Google Scholar 

  77. Wendt T, Harja E, Bucciarelli L, Qu W, Lu Y, Rong LL, et al. RAGE modulates vascular inflammation and atherosclerosis in a murine model of type 2 diabetes. Atherosclerosis. 2006;185:70–7.

    Article  CAS  PubMed  Google Scholar 

  78. Villanova N, Moscatiello S, Ramilli S, Bugianesi E, Magalotti D, Vanni E, et al. Endothelial dysfunction and cardiovascular risk profile in nonalcoholic fatty liver disease. Hepatology. 2005;42:473–80.

    Article  PubMed  Google Scholar 

  79. Leung C, Herath CB, Jia Z, Andrikopoulos S, Brown BE, Davies MJ, et al. Dietary advanced glycation end-products aggravate non-alcoholic fatty liver disease. World J Gastroenterol. 2016;22:8026–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sayej WN, Knight Iii PR, Guo WA, et al. Advanced glycation end products induce obesity and hepatosteatosis in CD-1 wild-type mice. Biomed Res Int. 2016;2016:7867852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hyogo H, Yamagishi S, Iwamoto K, Arihiro K, Takeuchi M, Sato T, et al. Elevated levels of serum advanced glycation end products in patients with non-alcoholic steatohepatitis. J Gastroenterol Hepatol. 2007;22:1112–9.

    Article  CAS  PubMed  Google Scholar 

  82. Sebekova K, Kupcova V, Schinzel R, Heidland A. Markedly elevated levels of plasma advanced glycation end products in patients with liver cirrhosis - amelioration by liver transplantation. J Hepatol. 2002;36:66–71.

    Article  CAS  PubMed  Google Scholar 

  83. Reeves HL, Zaki MY, Day CP. Hepatocellular carcinoma in obesity, type 2 diabetes, and NAFLD. Dig Dis Sci. 2016;61:1234–45.

    Article  CAS  PubMed  Google Scholar 

  84. Choi CS, Savage DB, Kulkarni A, Yu XX, Liu ZX, Morino K, et al. Suppression of diacylglycerol acyltransferase-2 (DGAT2), but not DGAT1, with antisense oligonucleotides reverses diet-induced hepatic steatosis and insulin resistance. J Biol Chem. 2007;282:22678–88.

    Article  CAS  PubMed  Google Scholar 

  85. Jiang G, Li Z, Liu F, Ellsworth K, Dallas-Yang Q, Wu M, et al. Prevention of obesity in mice by antisense oligonucleotide inhibitors of stearoyl-CoA desaturase-1. J Clin Invest. 2005;115:1030–8.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Savage DB, Choi CS, Samuel VT, Liu ZX, Zhang D, Wang A, et al. Reversal of diet-induced hepatic steatosis and hepatic insulin resistance by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1 and 2. J Clin Invest. 2006;116:817–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kohjima M, Enjoji M, Higuchi N, Kato M, Kotoh K, Yoshimoto T, et al. Re-evaluation of fatty acid metabolism-related gene expression in nonalcoholic fatty liver disease. Int J Mol Med. 2007;20:351–8.

    CAS  PubMed  Google Scholar 

  88. Poulsen MM, Larsen JO, Hamilton-Dutoit S, Clasen BF, Jessen N, Paulsen SK, et al. Resveratrol up-regulates hepatic uncoupling protein 2 and prevents development of nonalcoholic fatty liver disease in rats fed a high-fat diet. Nutr Res. 2012;32:701–8.

    Article  CAS  PubMed  Google Scholar 

  89. Nobili V, Manco M, Devito R, Ciampalini P, Piemonte F, Marcellini M. Effect of vitamin E on aminotransferase levels and insulin resistance in children with non-alcoholic fatty liver disease. Aliment Pharmacol Ther. 2006;24:1553–61.

    Article  CAS  PubMed  Google Scholar 

  90. Masterton GS, Plevris JN, Hayes PC. Review article: omega-3 fatty acids - a promising novel therapy for non-alcoholic fatty liver disease. Aliment Pharmacol Ther. 2010;31:679–92.

    Article  CAS  PubMed  Google Scholar 

  91. Choi YJ, Kim DH, Kim SJ, Kim J, Jeong SI, Chung CH, et al. Decursin attenuates hepatic fibrogenesis through interrupting TGF-beta-mediated NAD(P)H oxidase activation and Smad signaling in vivo and in vitro. Life Sci. 2014;108:94–103.

    Article  CAS  PubMed  Google Scholar 

  92. Tarling EJ, Clifford BL, Cheng J, Morand P, Cheng A, Lester E, et al. RNA-binding protein ZFP36L1 maintains posttranscriptional regulation of bile acid metabolism. J Clin Invest. 2017;127:3741–54.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Thayer TEMT, Shakartzi H, Wunderer F, Perrien D, Farber-Eger E, Burke M, et al. Inhibition of bone morphogenetic protein (BMP) signaling mitigates nonalcoholic fatty liver disease (NAFLD) and identification of an activating BMP receptor polymorphism associated with NAFLD. Circulation. 2017;136:A16421.

    Google Scholar 

  94. Baffy G. MicroRNAs in nonalcoholic fatty liver disease. J Clin Med. 2015;4:1977–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. He Z, Hu C, Jia W. miRNAs in non-alcoholic fatty liver disease. Front Med. 2016;10:389–96.

    Article  PubMed  Google Scholar 

  96. Gallego-Duran R, Romero-Gomez M. Epigenetic mechanisms in non-alcoholic fatty liver disease: an emerging field. World J Hepatol. 2015;7:2497–502.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Zhang M, Sun W, Zhou M, Tang Y. MicroRNA-27a regulates hepatic lipid metabolism and alleviates NAFLD via repressing FAS and SCD1. Sci Rep. 2017;7:14493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Klein R. Hyperglycemia and microvascular and macrovascular disease in diabetes. Diabetes Care. 1995;18:258–68.

    Article  CAS  PubMed  Google Scholar 

  99. Barlovic DP, Soro-Paavonen A, Jandeleit-Dahm KA. RAGE biology, atherosclerosis and diabetes. Clin Sci (Lond). 2011;121:43–55.

    Article  CAS  Google Scholar 

  100. Forbes JM, Yee LT, Thallas V, et al. Advanced glycation end product interventions reduce diabetes-accelerated atherosclerosis. Diabetes. 2004;53:1813–23.

    Article  CAS  PubMed  Google Scholar 

  101. Win MT, Yamamoto Y, Munesue S, et al. Regulation of RAGE for attenuating progression of diabetic vascular complications. Exp Diabetes Res. 2012;2012:894605.

    Article  CAS  PubMed  Google Scholar 

  102. Soro-Paavonen A, Watson AM, Li J, et al. Receptor for advanced glycation end products (RAGE) deficiency attenuates the development of atherosclerosis in diabetes. Diabetes. 2008;57:2461–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Saremi A, Howell S, Schwenke DC, Bahn G, Beisswenger PJ, Reaven PD. Advanced glycation end products, oxidation products, and the extent of atherosclerosis during the VA diabetes trial and follow-up study. Diabetes Care. 2017;40:591–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sun B, Li X, Liu X, Ge X, Lu Q, Zhao X, et al. Association between carotid plaque characteristics and acute cerebral infarction determined by MRI in patients with type 2 diabetes mellitus. Cardiovasc Diabetol. 2017;16:111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hasty AH, Shimano H, Osuga J, Namatame I, Takahashi A, Yahagi N, et al. Severe hypercholesterolemia, hypertriglyceridemia, and atherosclerosis in mice lacking both leptin and the low density lipoprotein receptor. J Biol Chem. 2001;276:37402–8.

    Article  CAS  PubMed  Google Scholar 

  106. Srivastava R, Cefalu, AB, Davide, A, Averna MR. A Combination of Metformin, Quercetin, and Curcumin Restores HDL Function and Improves Atherosclerosis Burden in LDLr−/−/ob.ob leptin−/− and LDLr−/− Mice by attenuating Inseulin Resistance, Hyperglycemia, and Low-grade Inflammation ATVB Scientific Session 2013:Abstract.

  107. Srivastava RAK. Dysfunctional HDL in diabetes mellitus and its role in the pathogenesis of cardiovascular disease. Mol Cell Biochem. 2018;440:167–187.

  108. Salomaa V, Riley W, Kark JD, Nardo C, Folsom AR. Non-insulin-dependent diabetes mellitus and fasting glucose and insulin concentrations are associated with arterial stiffness indexes. The ARIC study. Atherosclerosis risk in communities study. Circulation. 1995;91:1432–43.

    Article  CAS  PubMed  Google Scholar 

  109. Vicent D, Ilany J, Kondo T, Naruse K, Fisher SJ, Kisanuki YY, et al. The role of endothelial insulin signaling in the regulation of vascular tone and insulin resistance. J Clin Invest. 2003;111:1373–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Romero MJ, Platt DH, Tawfik HE, Labazi M, el-Remessy AB, Bartoli M, et al. Diabetes-induced coronary vascular dysfunction involves increased arginase activity. Circ Res. 2008;102:95–102.

    Article  CAS  PubMed  Google Scholar 

  111. Tkac I, Kimball BP, Lewis G, Uffelman K, Steiner G. The severity of coronary atherosclerosis in type 2 diabetes mellitus is related to the number of circulating triglyceride-rich lipoprotein particles. Arterioscler Thromb Vasc Biol. 1997;17:3633–8.

    Article  CAS  PubMed  Google Scholar 

  112. Goldin A, Beckman JA, Schmidt AM, Creager MA. Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation. 2006;114:597–605.

    Article  CAS  PubMed  Google Scholar 

  113. Abou-Seif MA, Youssef AA. Evaluation of some biochemical changes in diabetic patients. Clin Chim Acta. 2004;346:161–70.

    Article  CAS  PubMed  Google Scholar 

  114. Yao D, Brownlee M. Hyperglycemia-induced reactive oxygen species increase expression of the receptor for advanced glycation end products (RAGE) and RAGE ligands. Diabetes. 2010;59:249–55.

    Article  CAS  PubMed  Google Scholar 

  115. Srivastava RA, Srivastava N. High density lipoprotein, apolipoprotein A-I, and coronary artery disease. Mol Cell Biochem. 2000;209:131–44.

    Article  CAS  PubMed  Google Scholar 

  116. Gatti A, Maranghi M, Bacci S, Carallo C, Gnasso A, Mandosi E, et al. Poor glycemic control is an independent risk factor for low HDL cholesterol in patients with type 2 diabetes. Diabetes Care. 2009;32:1550–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Hoang A, Murphy AJ, Coughlan MT, Thomas MC, Forbes JM, O’Brien R, et al. Advanced glycation of apolipoprotein A-I impairs its anti-atherogenic properties. Diabetologia. 2007;50:1770–9.

    Article  CAS  PubMed  Google Scholar 

  118. Morgantini C, Natali A, Boldrini B, Imaizumi S, Navab M, Fogelman AM, et al. Anti-inflammatory and antioxidant properties of HDLs are impaired in type 2 diabetes. Diabetes. 2011;60:2617–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ohgami N, Miyazaki A, Sakai M, Kuniyasu A, Nakayama H, Horiuchi S. Advanced glycation end products (AGE) inhibit scavenger receptor class B type I-mediated reverse cholesterol transport: a new crossroad of AGE to cholesterol metabolism. J Atheroscler Thromb. 2003;10:1–6.

    Article  CAS  PubMed  Google Scholar 

  120. Srivastava N, Cefalu AB, Averna M, Srivastava RAK. Lack of correlation of plasma HDL with fecal cholesterol and plasma cholesterol efflux capacity suggests importance of HDL functionality in attenuation of atherosclerosis. Front Physiol. 2018;9:1222.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Low H, Hoang A, Forbes J, Thomas M, Lyons JG, Nestel P, et al. Advanced glycation end-products (AGEs) and functionality of reverse cholesterol transport in patients with type 2 diabetes and in mouse models. Diabetologia. 2012;55:2513–21.

    Article  CAS  PubMed  Google Scholar 

  122. Passarelli M, Tang C, McDonald TO, et al. Advanced glycation end product precursors impair ABCA1-dependent cholesterol removal from cells. Diabetes. 2005;54:2198–205.

    Article  CAS  PubMed  Google Scholar 

  123. McGillicuddy FC, de la Llera Moya M, Hinkle CC, et al. Inflammation impairs reverse cholesterol transport in vivo. Circulation. 2009;119:1135–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Apro J, Tietge UJ, Dikkers A, Parini P, Angelin B, Rudling M. Impaired cholesterol efflux capacity of high-density lipoprotein isolated from interstitial fluid in type 2 diabetes mellitus-brief report. Arterioscler Thromb Vasc Biol. 2016;36:787–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375:311–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Chalasani N, Younossi Z, Lavine JE et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology. 2017.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rai Ajit K. Srivastava.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, R.A.K. Life-style-induced metabolic derangement and epigenetic changes promote diabetes and oxidative stress leading to NASH and atherosclerosis severity. J Diabetes Metab Disord 17, 381–391 (2018). https://doi.org/10.1007/s40200-018-0378-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-018-0378-y

Keywords

Navigation