Skip to main content

Advertisement

Log in

Putative role of natural products as Protein Kinase C modulator in different disease conditions

  • Review article
  • Published:
DARU Journal of Pharmaceutical Sciences Aims and scope Submit manuscript

Abstract

Introduction

Protein kinase C (PKC) is a promising drug target for various therapeutic areas. Natural products derived from plants, animals, microorganisms, and marine organisms have been used by humans as medicine from prehistoric times. Recently, several compounds derived from plants have been found to modulate PKC activities through competitive binding with ATP binding site, and other allosteric regions of PKC. As a result fresh race has been started in academia and pharmaceutical companies to develop an effective naturally derived small-molecule inhibitor to target PKC activities. Herein, in this review, we have discussed several natural products and their derivatives, which are reported to have an impact on PKC signaling cascade.

Methods

All information presented in this review article regarding the regulation of PKC by natural products has been acquired by a systematic search of various electronic databases, including ScienceDirect, Scopus, Google Scholar, Web of science, ResearchGate, and PubMed. The keywords PKC, natural products, curcumin, rottlerin, quercetin, ellagic acid, epigallocatechin-3 gallate, ingenol 3 angelate, resveratrol, protocatechuic acid, tannic acid, PKC modulators from marine organism, bryostatin, staurosporine, midostaurin, sangivamycin, and other relevant key words were explored.

Results

The natural products and their derivatives including curcumin, rottlerin, quercetin, ellagic acid, epigallocatechin-3 gallate, ingenol 3 angelate, resveratrol, bryostatin, staurosporine, and midostaurin play a major role in the management of PKC activity during various disease progression.

Conclusion

Based on the comprehensive literature survey, it could be concluded that various natural products can regulate PKC activity during disease progression. However, extensive research is needed to circumvent the challenge of isoform specific regulation of PKC by natural products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mochly-Rosen D, Das K, Grimes KV. Protein kinase C, an elusive therapeutic target? Nat Rev Drug Discovery. 2012;11(12):937–57.

    Article  CAS  PubMed  Google Scholar 

  2. Konopatskaya O, Poole AW. Protein kinase Cα: disease regulator and therapeutic target. Trends Pharmacol Sci. 2010;31(1):8–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Omura S, Iwai Y, Hirano A, Nakagawa A, Awaya J, Tsuchiya H, et al. A new alkaloid AM-2282 of Streptomyces origin taxonomy, fermentation, isolation and preliminary characterization. The J Antibio. 1977;30(4):275–82.

  4. Harvey AL. Natural products in drug discovery. Drug Discovery Today. 2008;13(19–20):894–901.

    Article  CAS  PubMed  Google Scholar 

  5. Das J, Ramani R, Suraju MO. Polyphenol compounds and PKC signaling. Biochimica et Biophysica Acta (BBA)-General Subjects. 2016;1860(10):2107–21.

  6. Takai Y, Kishimoto A, Inoue M, Nishizuka Y. Studies on a cyclic nucleotide-independent protein kinase and its proenzyme in mammalian tissues. I. Purification and characterization of an active enzyme from bovine cerebellum. J Biol Chem. 1977;252(21):7603–9.

  7. Takai Y, Kishimoto A, Kikkawa U, Mori T, Nishizuka Y. Unsaturated diacylglycerol as a possible messenger for the activation of calcium-activated, phospholipid-dependent protein kinase system. Biochem Biophys Res Commun. 1979;91(4):1218–24.

    Article  CAS  PubMed  Google Scholar 

  8. Castagna M, Takai Y, Kaibuchi K, Sano K, Kikkawa U, Nishizuka Y. Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem. 1982;257(13):7847–51.

    Article  CAS  PubMed  Google Scholar 

  9. Newton AC. Protein kinase C: structure, function, and regulation. J Biol Chem. 1995;270(48):28495–8.

    Article  CAS  PubMed  Google Scholar 

  10. Singh RK, Kumar S, Gautam PK, Tomar MS, Verma PK, Singh SP, et al. Protein kinase C-α and the regulation of diverse cell responses. Biomol Concepts. 2017;8(3–4):143–53.

    Article  CAS  PubMed  Google Scholar 

  11. Isakov N. Protein kinase C (PKC) isoforms in cancer, tumor promotion and tumor suppression. Seminars in cancer biology: Elsevier; 2018. p. 36–52.

  12. Newton AC. Protein kinase C: poised to signal. Am J Physiol-Endocrinol and Metabol. 2010.

  13. House C, Kemp BE. Protein kinase C contains a pseudosubstrate prototope in its regulatory domain. Sci. 1987;238(4834):1726–8.

    Article  CAS  PubMed  Google Scholar 

  14. Nishikawa K, Toker A, Johannes F-J, Songyang Z, Cantley LC. Determination of the specific substrate sequence motifs of protein kinase C isozymes. J Biol Chem. 1997;272(2):952–60.

    Article  CAS  PubMed  Google Scholar 

  15. Ono Y, Fujii T, Igarashi K, Kuno T, Tanaka C, Kikkawa U, et al. Phorbol ester binding to protein kinase C requires a cysteine-rich zinc-finger-like sequence. Proc Natl Acad Sci. 1989;86(13):4868–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Freeley M, Kelleher D, Long A. Regulation of protein kinase C function by phosphorylation on conserved and non-conserved sites. Cell Signal. 2011;23(5):753–62.

    Article  CAS  PubMed  Google Scholar 

  17. Dutil EM, Toker A, Newton AC. Regulation of conventional protein kinase C isozymes by phosphoinositide-dependent kinase 1 (PDK-1). Curr Biol. 1998;8(25):1366–75.

    Article  CAS  PubMed  Google Scholar 

  18. Cenni V, Döppler H, Sonnenburg ED, Maraldi N, Newton AC, Toker A. Regulation of novel protein kinase C ε by phosphorylation. Biochem J. 2002;363(3):537–45.

    Article  CAS  PubMed Central  Google Scholar 

  19. Chou MM, Hou W, Johnson J, Graham LK, Lee MH, Chen C-S, et al. Regulation of protein kinase C ζ by PI 3-kinase and PDK-1. Curr Biol. 1998;8(19):1069–78.

    Article  CAS  PubMed  Google Scholar 

  20. Liu Q, Molkentin JD. Protein kinase Cα as a heart failure therapeutic target. J Mol Cell Cardiol. 2011;51(4):474–8.

    Article  CAS  PubMed  Google Scholar 

  21. Pass JM, Gao J, Jones WK, Wead WB, Wu X, Zhang J, et al. Enhanced PKCβII translocation and PKCβII-RACK1 interactions in PKCε-induced heart failure: a role for RACK1. Am J Physiol-Heart and Circul Physiol. 2001;281(6):H2500–10.

    Article  CAS  Google Scholar 

  22. Duquesnes N, Lezoualc’h F, Crozatier B. PKC-delta and PKC-epsilon: foes of the same family or strangers? J Mol Cell Cardiol. 2011;51(5):665–73.

    Article  CAS  PubMed  Google Scholar 

  23. Goldberg M, Steinberg SF. Tissue-specific developmental regulation of protein kinase C isoforms. Biochem Pharmacol. 1996;51(8):1089–93.

    Article  CAS  PubMed  Google Scholar 

  24. Altman A, Kong KF. Protein kinase C enzymes in the hematopoietic and immune systems. Annu Rev Immunol. 2016;34:511–38.

    Article  CAS  PubMed  Google Scholar 

  25. Wang T, Liu C, Jia L. The roles of PKCs in regulating autophagy. J Cancer Res Clin Oncol. 2018;144(12):2303–11.

    Article  CAS  PubMed  Google Scholar 

  26. Clemens M, Trayner I, Menaya J. The role of protein kinase C isoenzymes in the regulation of cell proliferation and differentiation. J Cell Sci. 1992;103(4):881–7.

    Article  CAS  PubMed  Google Scholar 

  27. Lanuza MA, Santafe MM, Garcia N, Besalduch N, Tomàs M, Obis T, et al. Protein kinase C isoforms at the neuromuscular junction: localization and specific roles in neurotransmission and development. J Anat. 2014;224(1):61–73.

    Article  CAS  PubMed  Google Scholar 

  28. Tu X, Yasuda R, Colgan LA. Rac1 is a downstream effector of PKCα in structural synaptic plasticity. Sci Rep. 2020;10(1):1–9.

    Article  Google Scholar 

  29. Lim CS, Nam HJ, Lee J, Kim D, Choi JE, Kang SJ, et al. PKCα-mediated phosphorylation of LSD1 is required for presynaptic plasticity and hippocampal learning and memory. Sci Rep. 2017;7(1):1–15.

    Google Scholar 

  30. Marrocco V, Bogomolovas J, Ehler E, dos Remedios CG, Yu J, Gao C, et al. PKC and PKN in heart disease. J Mol Cell Cardiol. 2019;128:212–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kooij V, Zhang P, Piersma SR, Sequeira V, Boontje NM, Wijnker PJ, et al. PKCα-specific phosphorylation of the troponin complex in human myocardium: a functional and proteomics analysis. PLoS One. 2013;8(10):e74847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Braz JC, Gregory K, Pathak A, Zhao W, Sahin B, Klevitsky R, et al. PKC-α regulates cardiac contractility and propensity toward heart failure. Nat Med. 2004;10(3):248–54.

    Article  CAS  PubMed  Google Scholar 

  33. Wakeham CM, Wilmarth PA, Cunliffe JM, Klimek JE, Ren G, David LL, et al. Identification of PKCα-dependent phosphoproteins in mouse retina. J Proteomics. 2019;206:103423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pfaff IL, Wagner HJ, Vallon V. Immunolocalization of protein kinase C isoenzymes α, βI and βII in rat kidney. J Am Soc Nephrol. 1999;10(9):1861–73.

    Article  CAS  PubMed  Google Scholar 

  35. Serlachius E, Svennilson J, Schalling M, Aperia A. Protein kinase C in the developing kidney: isoform expression and effects of ceramide and PKC inhibitors. Kidney Int. 1997;52(4):901–10.

    Article  CAS  PubMed  Google Scholar 

  36. Inagaki K, Churchill E, Mochly-Rosen D. Epsilon protein kinase C as a potential therapeutic target for the ischemic heart. Cardiovasc Res. 2006;70(2):222–30.

    Article  CAS  PubMed  Google Scholar 

  37. Chou WH, Messing RO. Protein kinase C isozymes in stroke. Trends Cardiovasc Med. 2005;15(2):47–51.

    Article  CAS  PubMed  Google Scholar 

  38. Alfonso SI, Callender JA, Hooli B, Antal CE, Mullin K, Sherman MA, et al. Gain-of-function mutations in protein kinase Cα (PKCα) may promote synaptic defects in Alzheimer’s disease. Sci Signaling. 2016;9(427):ra47-ra.

  39. Zhang D, Anantharam V, Kanthasamy A, Kanthasamy AG. Neuroprotective effect of protein kinase Cδ inhibitor rottlerin in cell culture and animal models of Parkinson’s disease. J Pharmacol Exp Ther. 2007;322(3):913–22.

    Article  CAS  PubMed  Google Scholar 

  40. Hahn CG, Friedman E. Abnormalities in protein kinase C signaling and the pathophysiology of bipolar disorder. Bipolar Disord. 1999;1(2):81–6.

    Article  CAS  PubMed  Google Scholar 

  41. Tury A, Tolentino K, Zou Y. Altered expression of atypical PKC and Ryk in the spinal cord of a mouse model of amyotrophic lateral sclerosis. Dev Neurobiol. 2014;74(8):839–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cirillo N, Lanza A, Prime SS. Induction of hyper-adhesion attenuates autoimmune-induced keratinocyte cell–cell detachment and processing of adhesion molecules via mechanisms that involve PKC. Exp Cell Res. 2010;316(4):580–92.

    Article  CAS  PubMed  Google Scholar 

  43. Skvara H, Dawid M, Kleyn E, Wolff B, Meingassner JG, Knight H, et al. The PKC inhibitor AEB071 may be a therapeutic option for psoriasis. J Clin Investig. 2008;118(9):3151–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee IT, Yang CM. Inflammatory signalings involved in airway and pulmonary diseases. Media of Inflamm. 2013;2013.

  45. Geraldes P, King GL. Activation of protein kinase C isoforms and its impact on diabetic complications. Circ Res. 2010;106(8):1319–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zong Y, Yuan Y, Qian X, Huang Z, Yang W, Lin L, et al. Small Molecular-Sized Artesunate Attenuates Ocular Neovascularization via VEGFR2. PKCα and PDGFR Targets Scientific reports. 2016;6(1):1–12.

    Google Scholar 

  47. Dominique JF, Kolassa IT, Ackermann S, Aerni A, Boesiger P, Demougin P, et al. PKCα is genetically linked to memory capacity in healthy subjects and to risk for posttraumatic stress disorder in genocide survivors. Proc Natl Acad Sci. 2012;109(22):8746–51.

    Article  Google Scholar 

  48. Yuan H, Ma Q, Ye L, Piao G. The traditional medicine and modern medicine from natural products. Molecules. 2016;21(5):559.

    Article  PubMed Central  Google Scholar 

  49. Hong J. Role of natural product diversity in chemical biology. Curr Opin Chem Biol. 2011;15(3):350–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cragg GM, Newman DJ. Natural products: a continuing source of novel drug leads. Biochimica et Biophysica Acta (BBA)-General Subjects. 2013;1830(6):3670–95.

  51. Butler MS. Natural products to drugs: natural product-derived compounds in clinical trials. Nat Prod Rep. 2008;25(3):475–516.

    Article  CAS  PubMed  Google Scholar 

  52. Zhu F, Ma XH, Qin C, Tao L, Liu X, Shi Z, et al. Drug discovery prospect from untapped species: indications from approved natural product drugs. PLoS One. 2012;7(7):e39782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Winter JM, Tang Y. Synthetic biological approaches to natural product biosynthesis. Curr Opin Biotechnol. 2012;23(5):736–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ji HF, Li XJ, Zhang HY. Natural products and drug discovery: can thousands of years of ancient medical knowledge lead us to new and powerful drug combinations in the fight against cancer and dementia? EMBO Rep. 2009;10(3):194–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod. 2016;79(3):629–61.

    Article  CAS  PubMed  Google Scholar 

  56. Cragg GM, Pezzuto JM. Natural products as a vital source for the discovery of cancer chemotherapeutic and chemopreventive agents. Med Princ Pract. 2016;25(Suppl. 2):41–59.

    Article  PubMed  Google Scholar 

  57. Meiyanto E, Hermawan A. Natural products for cancer-targeted therapy: citrus flavonoids as potent chemopreventive agents. Asian Pacific journal of cancer prevention: APJCP. 2012;13(2):427.

    Article  PubMed  Google Scholar 

  58. Guerra B, Issinger OG. Natural compounds and derivatives as Ser/Thr protein kinase modulators and inhibitors. Pharma. 2019;12(1):4.

    Article  CAS  PubMed Central  Google Scholar 

  59. Bharate SB, Sawant SD, Singh PP, Vishwakarma RA. Kinase inhibitors of marine origin. Chem Rev. 2013;113(8):6761–815.

    Article  CAS  PubMed  Google Scholar 

  60. Fan Z, Duan X, Cai H, Wang L, Li M, Qu J, et al. Curcumin inhibits the invasion of lung cancer cells by modulating the PKCα/Nox-2/ROS/ATF-2/MMP-9 signaling pathway. Oncol Rep. 2015;34(2):691–8.

    Article  CAS  PubMed  Google Scholar 

  61. Chen SQ, Wang ZS, Ma YX, Zhang W, Lu JL, Liang YR, et al. Neuroprotective effects and mechanisms of tea bioactive components in neurodegenerative diseases. Mole. 2018;23(3):512.

    Article  PubMed Central  Google Scholar 

  62. Kuo MY, Ou HC, Lee WJ, Kuo WW, Hwang LL, Song TY, et al. Ellagic acid inhibits oxidized low-density lipoprotein (OxLDL)-induced metalloproteinase (MMP) expression by modulating the protein kinase C-α/extracellular signal-regulated kinase/peroxisome proliferator-activated receptor γ/nuclear factor-κB (PKC-α/ERK/PPAR-γ/NF-κB) signaling pathway in endothelial cells. J Agric Food Chem. 2011;59(9):5100–8.

    Article  CAS  PubMed  Google Scholar 

  63. Soetikno V, Sari FR, Sukumaran V, Lakshmanan AP, Mito S, Harima M, et al. Curcumin prevents diabetic cardiomyopathy in streptozotocin-induced diabetic rats: possible involvement of PKC–MAPK signaling pathway. Eur J Pharm Sci. 2012;47(3):604–14.

    Article  CAS  PubMed  Google Scholar 

  64. Soetikno V, Watanabe K, Sari FR, Harima M, Thandavarayan RA, Veeraveedu PT, et al. Curcumin attenuates diabetic nephropathy by inhibiting PKC-α and PKC-β1 activity in streptozotocin-induced type I diabetic rats. Mol Nutr Food Res. 2011;55(11):1655–65.

    Article  CAS  PubMed  Google Scholar 

  65. Kim JY, Lee YM, Kim DW, Min T, Lee SJ. Nanosphere Loaded with Curcumin Inhibits the Gastrointestinal Cell Death Signaling Pathway Induced by the Foodborne Pathogen Vibrio vulnificus. Cells. 2020;9(3):631.

    Article  CAS  PubMed Central  Google Scholar 

  66. Cochet C, Feige J, Pirollet F, Keramidas M, Chambaz E. Selective inhibition of a cyclic nucleotide independent protein kinase (G type casein kinase) by quercetin and related polyphenols. Biochem Pharmacol. 1982;31(7):1357–61.

    Article  CAS  PubMed  Google Scholar 

  67. Tamoki T, Nomoto H, Takahashi I, Kato Y, Morimoto M, Tomita F. Staurosporine, a potent inhibitor of phospholipid calcium dependent protein kinase. Biochem Biophys Res Commun. 1986;135:397–402.

    Article  Google Scholar 

  68. Matias D, Bessa C, Simões MF, Reis CP, Saraiva L, Rijo P. Natural products as lead protein kinase c modulators for cancer therapy. Studies in natural products chemistry. Elsevier; 2016. p. 45–79.

  69. Gupta SC, Patchva S, Koh W, Aggarwal BB. Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clin Exp Pharmacol Physiol. 2012;39(3):283–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hewlings SJ, Kalman DS. Curcumin: a review of its’ effects on human health. Foods. 2017;6(10):92.

    Article  PubMed Central  Google Scholar 

  71. Pany S, You Y, Das J. Curcumin Inhibits Protein Kinase Cα Activity by Binding to Its C1 Domain. Biochem. 2016;55(45):6327–36.

    Article  CAS  PubMed  Google Scholar 

  72. Lai K, Liu C, Chang K, Lee T. Depleting IFIT2 mediates atypical PKC signaling to enhance the migration and metastatic activity of oral squamous cell carcinoma cells. Oncogene. 2013;32(32):3686–97.

    Article  CAS  PubMed  Google Scholar 

  73. Zhang Y, Kong Y, Liu S, Zeng L, Wan L, Zhang Z. Curcumin induces apoptosis in human leukemic cell lines through an IFIT2-dependent pathway. Cancer Biol Ther. 2017;18(1):43–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Roy M, Mukherjee S, Sarkar R, Biswas J. Curcumin sensitizes chemotherapeutic drugs via modulation of PKC, telomerase, NF-κB and HDAC in breast cancer. Ther Deliv. 2011;2(10):1275–93.

    Article  CAS  Google Scholar 

  75. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol Pharm. 2007;4(6):807–18.

    Article  CAS  Google Scholar 

  76. Schiborr C, Kocher A, Behnam D, Jandasek J, Toelstede S, Frank J. The oral bioavailability of curcumin from micronized powder and liquid micelles is significantly increased in healthy humans and differs between sexes. Mol Nutr Food Res. 2014;58(3):516–27.

    Article  CAS  PubMed  Google Scholar 

  77. Hackler L Jr, Ózsvári B, Gyuris M, Sipos P, Fábián G, Molnár E, et al. The curcumin analog C-150, influencing NF-κB, UPR and Akt/Notch pathways has potent anticancer activity in vitro and in vivo. PLoS One. 2016;11(3):e0149832.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Badr G, Gul HI, Yamali C, Mohamed AA, Badr BM, Gul M, et al. Curcumin analogue 1, 5-bis (4-hydroxy-3-((4-methylpiperazin-1-yl) methyl) phenyl) penta-1, 4-dien-3-one mediates growth arrest and apoptosis by targeting the PI3K/AKT/mTOR and PKC-theta signaling pathways in human breast carcinoma cells. Bioorg Chem. 2018;78:46–57.

    Article  CAS  PubMed  Google Scholar 

  79. Kline LW, Karpinski E. Curcumin Relaxes Precontracted Guinea Pig Gallbladder Strips via Multiple Signaling Pathways. Gastroenterology Res. 2015;8(5):253.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Wang L, Zhang B, Huang F, Liu B, Xie Y. Curcumin inhibits lipolysis via suppression of ER stress in adipose tissue and prevents hepatic insulin resistance. J Lipid Res. 2016;57(7):1243–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Xie Z, Zeng X, Li X, Wu B, Shen G, Wu Q, et al. Curcumin attenuates oxidative stress in liver in Type 1 diabetic rats. Open Life Sci. 2017;12(1):452–9.

    Article  CAS  Google Scholar 

  82. Clements RT, Cordeiro B, Feng J, Bianchi C, Sellke FW. Rottlerin increases cardiac contractile performance and coronary perfusion through BKCa++ channel activation after cold cardioplegic arrest in isolated hearts. Circul. 2011;124(11_suppl_1):S55-S61.

  83. Davies SP, Reddy H, Caivano M, Cohen P. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J. 2000;351(1):95–105.

    Article  CAS  PubMed Central  Google Scholar 

  84. Mori N, Ishikawa C, Senba M. Activation of PKC‑δ in HTLV‑1‑infected T cells. Int J Oncol. 2015;46(4):1609–18.

  85. Misuth M, Horvath D, Miskovsky P, Huntosova V. Synergism between PKCδ regulators hypericin and rottlerin enhances apoptosis in U87 MG glioma cells after light stimulation. Photodiagn Photodyn Ther. 2017;18:267–74.

    Article  CAS  Google Scholar 

  86. Wermuth PJ, Addya S, Jimenez SA. Effect of protein kinase C delta (PKC-δ) inhibition on the transcriptome of normal and systemic sclerosis human dermal fibroblasts in vitro. PLoS One. 2011;6(11):e27110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kelly GS. Monograph-Quercetin. Altern Med Rev. 2011;16(2):172.

    PubMed  Google Scholar 

  88. Chirumbolo S, Marzotto M, Conforti A, Vella A, Ortolani R, Bellavite P. Bimodal action of the flavonoid quercetin on basophil function: an investigation of the putative biochemical targets. Clin and Mole Allergy. 2010;8(1):1–12.

    Article  Google Scholar 

  89. Zhang XM, Huang SP, Xu Q. Quercetin inhibits the invasion of murine melanoma B16-BL6 cells by decreasing pro-MMP-9 via the PKC pathway. Cancer Chemother Pharmacol. 2004;53(1):82–8.

    Article  CAS  PubMed  Google Scholar 

  90. Maurya AK, Vinayak M. Anticarcinogenic action of quercetin by downregulation of phosphatidylinositol 3-kinase (PI3K) and protein kinase C (PKC) via induction of p53 in hepatocellular carcinoma (HepG2) cell line. Mol Biol Rep. 2015;42(9):1419–29.

    Article  CAS  PubMed  Google Scholar 

  91. Lee BK, Jung Y-S. Allium cepa extract and quercetin protect neuronal cells from oxidative stress via PKC-ε inactivation/ERK1/2 activation. Oxidative Med and Cell Longevity. 2016;2016.

  92. Shin EJ, Lee JS, Hong S, Lim TG, Byun S. Quercetin Directly Targets JAK2 and PKCδ and Prevents UV-Induced Photoaging in Human Skin. Int J Mol Sci. 2019;20(21):5262.

    Article  CAS  PubMed Central  Google Scholar 

  93. Larrosa M, García-Conesa MT, Espín JC, Tomás-Barberán FA. Ellagitannins, ellagic acid and vascular health. Mol Aspects Med. 2010;31(6):513–39.

    Article  CAS  PubMed  Google Scholar 

  94. Kesavan R, Ganugula R, Avaneesh T, Kumar U, Reddy GB, Dixit M. Ellagic acid inhibits PDGF-BB-induced vascular smooth muscle cell proliferation and prevents atheroma formation in streptozotocin-induced diabetic rats. J Nutr Biochem. 2013;24(11):1830–9.

    Article  PubMed  Google Scholar 

  95. Mo J, Panichayupakaranant P, Kaewnopparat N, Songkro S, Reanmongkol W. Topical anti-inflammatory potential of standardized pomegranate rind extract and ellagic acid in contact dermatitis. Phytother Res. 2014;28(4):629–32.

    Article  CAS  PubMed  Google Scholar 

  96. Chung YC, Lu LC, Tsai MH, Chen YJ, Chen YY, Yao SP, et al. The inhibitory effect of ellagic acid on cell growth of ovarian carcinoma cells. Evidence-Based Complement and Altern Med. 2013;2013.

  97. Chang Y, Chen W-F, Lin K-H, Hsieh C-Y, Chou D-S, Lin L-J, et al. Novel bioactivity of ellagic acid in inhibiting human platelet activation. Evidence-Based Complement and Altern Med. 2013;2013.

  98. Mishra S, Vinayak M. Ellagic acid inhibits PKC signaling by improving antioxidant defense system in murine T cell lymphoma. Mol Biol Rep. 2014;41(7):4187–97.

    Article  CAS  PubMed  Google Scholar 

  99. Mishra S, Vinayak M. Ellagic acid checks lymphoma promotion via regulation of PKC signaling pathway. Mol Biol Rep. 2013;40(2):1417–28.

    Article  CAS  PubMed  Google Scholar 

  100. Mishra S, Vinayak M. Role of ellagic acid in regulation of apoptosis by modulating novel and atypical PKC in lymphoma bearing mice. BMC Complement Altern Med. 2015;15(1):1–8.

    Article  CAS  Google Scholar 

  101. Singh BN, Shankar S, Srivastava RK. Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem Pharmacol. 2011;82(12):1807–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kitano K, Nam KY, Kimura S, Fujiki H, Imanishi Y. Sealing effects of (−)-epigallocatechin gallate on protein kinase C and protein phosphatase 2A. Biophys Chem. 1997;65(2–3):157–64.

    Article  CAS  PubMed  Google Scholar 

  103. Levites Y, Amit T, Mandel S, Youdim MB. Neuroprotection and neurorescue against Aβ toxicity and PKC-dependent release of non-amyloidogenic soluble precursor protein by green tea polyphenol (-)-epigallocatechin-3-gallate. FASEB J. 2003;17(8):1–23.

    Article  Google Scholar 

  104. Levites Y, Amit T, Youdim MB, Mandel S. Involvement of protein kinase C activation and cell survival/cell cycle genes in green tea polyphenol (−)-epigallocatechin 3-gallate neuroprotective action. J Biol Chem. 2002;277(34):30574–80.

    Article  CAS  PubMed  Google Scholar 

  105. Kalfon L, Youdim MB, Mandel SA. Green tea polyphenol (–)-epigallocatechin-3-gallate promotes the rapid protein kinase C-and proteasome-mediated degradation of Bad: implications for neuroprotection. J Neurochem. 2007;100(4):992–1002.

    Article  CAS  PubMed  Google Scholar 

  106. Menard C, Bastianetto S, Quirion R. Neuroprotective effects of resveratrol and epigallocatechin gallate polyphenols are mediated by the activation of protein kinase C gamma. Front Cell Neurosci. 2013;7:281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhao X, Liu F, Jin H, Li R, Wang Y, Zhang W, et al. Involvement of PKCα and ERK1/2 signaling pathways in EGCG’s protection against stress-induced neural injuries in Wistar rats. Neuroscience. 2017;346:226–37.

    Article  CAS  PubMed  Google Scholar 

  108. Park SJ, Jeong JM, Jeong H-S, Park J-S, Kim N-H. Effects of Epigallocatechin-3-Gallate on the Expression of TGF-β1, PKC α/βII, and NF-κB in High-Glucose-Stimulated Glomerular Epithelial Cells. Chonnam Med J. 2011;47(2):116–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yang J, Han Y, Chen C, Sun H, He D, Guo J, et al. EGCG attenuates high glucose-induced endothelial cell inflammation by suppression of PKC and NF-κB signaling in human umbilical vein endothelial cells. Life Sci. 2013;92(10):589–97.

    Article  CAS  PubMed  Google Scholar 

  110. Yang J, Han Y, Sun H, Chen C, He D, Guo J, et al. (−)-Epigallocatechin gallate suppresses proliferation of vascular smooth muscle cells induced by high glucose by inhibition of PKC and ERK1/2 signalings. J Agric Food Chem. 2011;59(21):11483–90.

    Article  CAS  PubMed  Google Scholar 

  111. Kedei N, Lundberg DJ, Toth A, Welburn P, Garfield SH, Blumberg PM. Characterization of the interaction of ingenol 3-angelate with protein kinase C. Can Res. 2004;64(9):3243–55.

    Article  CAS  Google Scholar 

  112. Hampson P, Chahal H, Khanim F, Hayden R, Mulder A, Assi LK, et al. PEP005, a selective small-molecule activator of protein kinase C, has potent antileukemic activity mediated via the delta isoform of PKC. Blood. 2005;106(4):1362–8.

    Article  CAS  PubMed  Google Scholar 

  113. Serova M, Ghoul A, Benhadji KA, Faivre S, Le Tourneau C, Cvitkovic E, et al. Effects of protein kinase C modulation by PEP005, a novel ingenol angelate, on mitogen-activated protein kinase and phosphatidylinositol 3-kinase signaling in cancer cells. Mol Cancer Ther. 2008;7(4):915–22.

    Article  CAS  PubMed  Google Scholar 

  114. Lee WY, Hampson P, Coulthard L, Ali F, Salmon M, Lord JM, et al. Novel antileukemic compound ingenol 3-angelate inhibits T cell apoptosis by activating protein kinase Cθ. J Biol Chem. 2010;285(31):23889–98.

  115. Wang Y, Catana F, Yang Y, Roderick R, van Breemen RB. An LC-MS method for analyzing total resveratrol in grape juice, cranberry juice, and in wine. J Agric Food Chem. 2002;50(3):431–5.

    Article  CAS  PubMed  Google Scholar 

  116. Slater SJ, Seiz JL, Cook AC, Stagliano BA, Buzas CJ. Inhibition of protein kinase C by resveratrol. Biochimica et Biophysica Acta (BBA)-Mole Basis of Dis. 2003;1637(1):59–69.

  117. Woo JH, Lim JH, Kim YH, Suh SI, Chang JS, Lee YH, et al. Resveratrol inhibits phorbol myristate acetate-induced matrix metalloproteinase-9 expression by inhibiting JNK and PKC δ signal transduction. Oncogene. 2004;23(10):1845–53.

    Article  CAS  PubMed  Google Scholar 

  118. Fang JY, Li ZH, Li Q, Huang WS, Kang L, Wang JP. Resveratrol affects protein kinase C activity and promotes apoptosis in human colon carcinoma cells. Asian Pac J Cancer Prev. 2012;13(12):6017–22.

    Article  PubMed  Google Scholar 

  119. Morris-Blanco KC, Dave KR, Saul I, Koronowski KB, Stradecki HM, Perez-Pinzon MA. Protein kinase C epsilon promotes cerebral ischemic tolerance via modulation of mitochondrial Sirt5. Sci Rep. 2016;6:29790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hsu HT, Tseng YT, Wong WJ, Liu CM, Lo YC. Resveratrol prevents nanoparticles-induced inflammation and oxidative stress via downregulation of PKC-α and NADPH oxidase in lung epithelial A549 cells. BMC Complement Altern Med. 2018;18(1):1–13.

    Article  Google Scholar 

  121. Gonzaga R, Volpe C, Villar-Delfino P, Anjos P, Gomes P, NOGUEIRA-MACHADO J. Resveratrol inhibits the production of reactive oxygen species in phorbol ester-and toll-like receptor-stimulated granulocytes from diabetic patients. J Diabetes Metab Disord Control. 2016;3(7):147–52.

  122. Kakkar S, Bais S. A review on protocatechuic acid and its pharmacological potential. Int Scholar Res Notices. 2014;2014.

  123. Semaming Y, Pannengpetch P, Chattipakorn SC, Chattipakorn N. Pharmacological properties of protocatechuic acid and its potential roles as complementary medicine. Evidence-Based Complement and Altern Med. 2015;2015.

  124. Szaefer H, Kaczmarek J, Rybczyńska M, Baer-Dubowska W. The effect of plant phenols on the expression and activity of phorbol ester-induced PKC in mouse epidermis. Toxicol. 2007;230(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  125. Lin CY, Tsai SJ, Huang CS, Yin MC. Antiglycative effects of protocatechuic acid in the kidneys of diabetic mice. J Agric Food Chem. 2011;59(9):5117–24.

    Article  CAS  PubMed  Google Scholar 

  126. Bhattacharjee N, Dua TK, Khanra R, Joardar S, Nandy A, Saha A, et al. Protocatechuic acid, a phenolic from Sansevieria roxburghiana leaves, suppresses diabetic cardiomyopathy via stimulating glucose metabolism, ameliorating oxidative stress, and inhibiting inflammation. Front Pharmacol. 2017;8:251.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Hussain G, Huang J, Rasul A, Anwar H, Imran A, Maqbool J, et al. Putative roles of plant-derived tannins in neurodegenerative and neuropsychiatry disorders: An updated review. Mole. 2019;24(12):2213.

    Article  CAS  PubMed Central  Google Scholar 

  128. Ahmad T. Reviewing the tannic acid mediated synthesis of metal nanoparticles. Journal of Nanotechnology. 2014;2014.

  129. Mittal DK, Joshi D, Shukla S. Antioxidant and Hepatoprotective Effects of Polygonum Bistorta Linn. and Tannic Acid on Carbon Tetrachloride-treated Rats. IJP; 2011.

  130. Yang EB, Wei L, Zhang K, Chen YZ, Chen WN. Tannic acid, a potent inhibitor of epidermal growth factor receptor tyrosine kinase. J Biochem. 2006;139(3):495–502.

    Article  CAS  PubMed  Google Scholar 

  131. Nardini M, Scaccini C, Packer L, Virgili F. In vitro inhibition of the activity of phosphorylase kinase, protein kinase C and protein kinase A by caffeic acid and a procyanidin-rich pine bark (Pinus marittima) extract. Biochimica et Biophysica Acta (BBA)-General Subjects. 2000;1474(2):219–25.

  132. Huang YT, Kuo ML, Liu JY, Huang SY, Lin JK. Inhibitions of protein kinase C and proto-oncogene expressions in NIH 3T3 cells by apigenin. Eur J Cancer. 1996;32(1):146–51.

    Article  Google Scholar 

  133. Vargo MA, Voss OH, Poustka F, Cardounel AJ, Grotewold E, Doseff AI. Apigenin-induced-apoptosis is mediated by the activation of PKCδ and caspases in leukemia cells. Biochem Pharmacol. 2006;72(6):681–92.

    Article  CAS  PubMed  Google Scholar 

  134. Herbert J, Maffrand J, Taoubi K, Augereau J, Fouraste I, Gleye J. Verbascoside isolated from Lantana camara, an inhibitor of protein kinase C. J Nat Prod. 1991;54(6):1595–600.

    Article  CAS  PubMed  Google Scholar 

  135. End D, Look R, Shaffer N, Balles E, Persico F. Non-selective inhibition of mammalian protein kinases by flavinoids in vitro. Res Commun Chem Pathol Pharmacol. 1987;56(1):75–86.

    CAS  PubMed  Google Scholar 

  136. Ferriola PC, Cody V, Middleton E Jr. Protein kinase C inhibition by plant flavonoids: kinetic mechanisms and structure-activity relationships. Biochem Pharmacol. 1989;38(10):1617–24.

    Article  CAS  PubMed  Google Scholar 

  137. Scoditti E, Nestola A, Massaro M, Calabriso N, Storelli C, De Caterina R, et al. Hydroxytyrosol suppresses MMP-9 and COX-2 activity and expression in activated human monocytes via PKCα and PKCβ1 inhibition. Atherosclerosis. 2014;232(1):17–24.

    Article  CAS  PubMed  Google Scholar 

  138. Shang J, Hu B, Wang J, Zhu F, Kang Y, Li D, et al. Cheminformatic insight into the differences between terrestrial and marine originated natural products. J Chem Inf Model. 2018;58(6):1182–93.

    Article  CAS  PubMed  Google Scholar 

  139. Blunt JW, Copp BR, Hu WP, Munro MH, Northcote PT, Prinsep MR. Marine natural products. Nat Prod Rep. 2008;25(1):35–94.

    Article  CAS  PubMed  Google Scholar 

  140. Bernan V, Greenstein M, Maiese W. Marine microorganisms as a source of new natural products. Advances in applied microbiology. Elsevier; 1997. p. 57–90.

  141. Pettit GR, Herald CL, Doubek DL, Herald DL, Arnold E, Clardy J. Isolation and structure of bryostatin 1. J Am Chem Soc. 1982;104(24):6846–8.

    Article  CAS  Google Scholar 

  142. Skropeta D, Pastro N, Zivanovic A. Kinase inhibitors from marine sponges. Mar Drugs. 2011;9(10):2131–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Sun MK, Alkon DL. Bryostatin-1: Pharmacology and Therapeutic Potential as a CNS Drug. CNS Drug Rev. 2006;12(1):1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Kim H, Han S, Quan H, Jung YJ, An J, Kang P, et al. Bryostatin-1 promotes long-term potentiation via activation of PKCα and PKCε in the hippocampus. Neurosci. 2012;226:348–55.

    Article  CAS  PubMed  Google Scholar 

  145. Kollár P, Rajchard J, Balounová Z, Pazourek J. Marine natural products: bryostatins in preclinical and clinical studies. Pharm Biol. 2014;52(2):237–42.

    Article  PubMed  Google Scholar 

  146. von Burstin VA, Xiao L, Kazanietz MG. Bryostatin 1 inhibits phorbol ester-induced apoptosis in prostate cancer cells by differentially modulating protein kinase C (PKC) δ translocation and preventing PKCδ-mediated release of tumor necrosis factor-α. Mol Pharmacol. 2010;78(3):325–32.

    Article  Google Scholar 

  147. Curiel RE, Garcia CS, Farooq L, Aguero MF, Espinoza-Delgado I. Bryostatin-1 and IL-2 synergize to induce IFN-γ expression in human peripheral blood T cells: implications for cancer immunotherapy. J Immunol. 2001;167(9):4828–37.

    Article  CAS  PubMed  Google Scholar 

  148. Kudinov Y, Wiseman CL, Kharazi AI. Phorbol myristate acetate and Bryostatin 1 rescue IFN-gamma inducibility of MHC class II molecules in LS1034 colorectal carcinoma cell line. Cancer Cell Int. 2003;3(1):1–16.

    Article  Google Scholar 

  149. Díaz L, Martínez-Bonet M, Sánchez J, Fernández-Pineda A, Jiménez JL, Muñoz E, et al. Bryostatin activates HIV-1 latent expression in human astrocytes through a PKC and NF-ĸB-dependent mechanism. Sci Rep. 2015;5:12442.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Mehla R, Bivalkar-Mehla S, Zhang R, Handy I, Albrecht H, Giri S, et al. Bryostatin modulates latent HIV-1 infection via PKC and AMPK signaling but inhibits acute infection in a receptor independent manner. PLoS One. 2010;5(6):e11160.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Tan Z, Turner RC, Leon RL, Li X, Hongpaisan J, Zheng W, et al. Bryostatin improves survival and reduces ischemic brain injury in aged rats after acute ischemic stroke. Stroke. 2013;44(12):3490–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Hongpaisan J, Sun MK, Alkon DL. PKC ε activation prevents synaptic loss, Aβ elevation, and cognitive deficits in Alzheimer’s disease transgenic mice. J Neurosci. 2011;31(2):630–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Farlow MR, Thompson RE, Wei LJ, Tuchman AJ, Grenier E, Crockford D, et al. A randomized, double-blind, placebo-controlled, phase II study assessing safety, tolerability, and efficacy of bryostatin in the treatment of moderately severe to severe Alzheimer’s disease. J Alzheimers Dis. 2019;67(2):555–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Yoo J, Nichols A, Mammen J, Calvo I, Song JC, Worrell RT, et al. Bryostatin-1 enhances barrier function in T84 epithelia through PKC-dependent regulation of tight junction proteins. Am J Physiol Cell Physiol. 2003;285(2):C300–9.

    Article  CAS  PubMed  Google Scholar 

  155. Rodriguez J, Peters BM, Kurz L, Schatzman RC, McCarley D, Lou L, et al. An alkaloid protein kinase C inhibitor, xestocyclamine A, from the marine sponge Xestospongia sp. J Am Chem Soc. 1993;115(22):10436–7.

    Article  CAS  Google Scholar 

  156. Patil AD, Freyer AJ, Killmer L, Hofmann G, Johnson RK. Z-Axinohydantoin and debromo-Z-axinohydantoin from the sponge Stylotella aurantium: Inhibitors of protein kinase C. Nat Prod Lett. 1997;9(3):201–7.

    Article  CAS  Google Scholar 

  157. Patil AD, Freyer AJ, Killmer L, Offen P, Carte B, Jurewicz AJ, et al. Frondosins, five new sesquiterpene hydroquinone derivatives with novel skeletons from the sponge Dysidea frondosa: Inhibitors of interleukin-8 receptors. Tetrahedron. 1997;53(14):5047–60.

    Article  CAS  Google Scholar 

  158. Willis R, De Vries D. BRS1, a C30 bis-amino, bis-hydroxy polyunsaturated lipid from an Australian calcareous sponge that inhibits protein kinase C. Toxicon. 1997;35(7):1125–9.

    Article  CAS  PubMed  Google Scholar 

  159. Shigemori H, Madono T, Sasaki T, Mikami Y, Kobayashi Ji. Nakijiquinones A and B, new antifungal sesquiterpenoid quinones with an amino acid residue from an Okinawan marine sponge. Tetrahedron. 1994;50(28):8347–54.

  160. He H, Kulanthaivel P, Baker BJ. New cytotoxic sesterterpenes from the marine sponge Spongia sp. Tetrahedron Lett. 1994;35(39):7189–92.

    Article  CAS  Google Scholar 

  161. Longley RE, Harmody D. A rapid colorimetric microassay to detect agonists/antagonists of protein kinase C based on adherence of EL-4. IL-2 cells. The J Antibio. 1991;44(1):93–102.

  162. Alvi KA, Jaspars M, Crews P, Strulovici B, Oto E. Penazetidine A, an alkaloid inhibitor of protein kinase C. Bioorg Med Chem Lett. 1994;4(20):2447–50.

    Article  CAS  Google Scholar 

  163. Hallock YF, Cardellina JH, Boyd MR. (-)-Frondosins A and D, HIV-Inhibitory Sesquiterpene Hydroquinone Derivatives from Euryspongia sp. Nat Prod Lett. 1998;11(2):153–60.

    Article  CAS  Google Scholar 

  164. Takahashi Y, Kubota T, Ito J, Mikami Y, Fromont J, Kobayashi Ji. Nakijiquinones GI, new sesquiterpenoid quinones from marine sponge. Bioorganic & med chem. 2008;16(16):7561–4.

  165. Takahashi I, Kobayashi E, Asano K, Yoshida M, Nakano H. UCN-01, a selective inhibitor of protein kinase C from Streptomyces. J Antibiot. 1987;40(12):1782–4.

    Article  CAS  Google Scholar 

  166. Marengo B, De Ciucis C, Ricciarelli R, Pronzato MA, Marinari UM, Domenicotti C. Protein kinase C: an attractive target for cancer therapy. Cancers. 2011;3(1):531–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Propper D, McDonald A, Man A, Thavasu P, Balkwill F, Braybrooke J, et al. Phase I and pharmacokinetic study of PKC412, an inhibitor of protein kinase C. J Clin Oncol. 2001;19(5):1485–92.

    Article  CAS  PubMed  Google Scholar 

  168. Selzer E, Okamoto I, Lucas T, Kodym R, Pehamberger H, Jansen B. Protein kinase C isoforms in normal and transformed cells of the melanocytic lineage. Melanoma Res. 2002;12(3):201–9.

    Article  CAS  PubMed  Google Scholar 

  169. Rasko JE, Hughes TP. First approved kinase inhibitor for AML. Cell. 2017;171(5):981.

    Article  CAS  PubMed  Google Scholar 

  170. Fabbro D, Ruetz S, Bodis S, Pruschy M, Csermak K, Man A, et al. PKC412-a protein kinase inhibitor with a broad therapeutic potential. Anticancer Drug Des. 2000;15(1):17–28.

    CAS  PubMed  Google Scholar 

  171. Fabbro D, Buchdunger E, Wood J, Mestan J, Hofmann F, Ferrari S, et al. Inhibitors of protein kinases: CGP 41251, a protein kinase inhibitor with potential as an anticancer agent. Pharmacol Ther. 1999;82(2–3):293–301.

    Article  CAS  PubMed  Google Scholar 

  172. Ge X, Chen J, Li L, Ding P, Wang Q, Zhang W, et al. Midostaurin potentiates rituximab antitumor activity in Burkitt’s lymphoma by inducing apoptosis. Cell Death Dis. 2018;10(1):1–12.

    Article  Google Scholar 

  173. Tvedt TH, Nepstad I, Bruserud Ø. Antileukemic effects of midostaurin in acute myeloid leukemia–the possible importance of multikinase inhibition in leukemic as well as nonleukemic stromal cells. Expert Opin Investig Drugs. 2017;26(3):343–55.

    Article  CAS  PubMed  Google Scholar 

  174. Valent P, Akin C, Hartmann K, George TI, Sotlar K, Peter B, et al. Midostaurin: a magic bullet that blocks mast cell expansion and activation. Ann Oncol. 2017;28(10):2367–76.

    Article  CAS  PubMed  Google Scholar 

  175. Osada H, Sonoda T, Tsunoda K, Isono K. A new biological role of sangivamycin; inhibition of protein kinases. J Antibiot. 1989;42(1):102–6.

    Article  CAS  Google Scholar 

  176. Loomis C, Bell R. Sangivamycin, a nucleoside analogue, is a potent inhibitor of protein kinase C. J Biol Chem. 1988;263(4):1682–92.

    Article  CAS  PubMed  Google Scholar 

  177. Lee SA, Jung M. The nucleoside analog sangivamycin induces apoptotic cell death in breast carcinoma MCF7/adriamycin-resistant cells via protein kinase Cδ and JNK activation. J Biol Chem. 2007;282(20):15271–83.

    Article  CAS  PubMed  Google Scholar 

  178. Stockwin LH, Sherry XY, Stotler H, Hollingshead MG, Newton DL. ARC (NSC 188491) has identical activity to Sangivamycin (NSC 65346) including inhibition of both P-TEFb and PKC. BMC Cancer. 2009;9(1):1–13.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the CSIR-UGC, New Delhi for the financial support to RKS for his research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arbind Acharya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R.K., Kumar, S., Tomar, M.S. et al. Putative role of natural products as Protein Kinase C modulator in different disease conditions. DARU J Pharm Sci 29, 397–414 (2021). https://doi.org/10.1007/s40199-021-00401-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40199-021-00401-z

Keywords

Navigation