Skip to main content

Advertisement

Log in

The analgesic potential of glycosides derived from medicinal plants

  • Review article
  • Published:
DARU Journal of Pharmaceutical Sciences Aims and scope Submit manuscript

Abstract

Pain represents an unpleasant sensation linked to actual or potential tissue damage. In the early phase, the sensation of pain is caused due to direct stimulation of the sensory nerve fibers. On the other hand, the pain in the late phase is attributed to inflammatory mediators. Current medicines used to treat inflammation and pain are effective; however, they cause severe side effects, such as ulcer, anemia, osteoporosis, and endocrine disruption. Increased attention is recently being focused on the examination of the analgesic potential of phytoconstituents, such as glycosides of traditional medicinal plants, because they often have suitable biological activities with fewer side effects as compared to synthetic drugs. The purpose of this article is to review for the first time the current state of knowledge on the use of glycosides from medicinal plants to induce analgesia and anti-inflammatory effect. Various databases and search engines, including PubMed, ScienceDirect, Scopus, Web of Science and Google Scholar, were used to search and collect relevant studies on glycosides with antinociceptive activities. The results led to the identification of several glycosides that exhibited marked inhibition of various pain mediators based on different well-established assays. Additionally, these glycosides were found to induce most of the analgesic effects through cyclooxygenase and lipoxygenase pathways. These findings can be useful to identify new candidates which can be clinically developed as analgesics with better bioavailability and reduced side effects.

Analgesic mechanisms of plant glycosides

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AUC:

area under the curve

COX:

cyclooxygenase

ED50 :

50% effective dose

IC50 :

50% inhibitory concentration

i.p.:

intraperitoneal

i.v.:

intravenous

LOX:

lipoxygenase

LTs:

leukotrienes

MMP:

metalloproteinase

PGs:

prostaglandins

PGE2 :

prostaglandin E2

PGI2 :

prostaglandin I2

p.o.:

per os

SDF:

salicylate derivative fraction

TPA:

12-O-tetradecanoylphorbol-13-acetate

UDPGA:

uridine diphosphoglucuronic acid

References

  1. Andersen LPH, Gogenur I, Fenger AQ, Petersen MC, Rosenberg J, Werner MU. Analgesic and antihyperalgesic effects of melatonin in a human inflammatory pain model: a randomized, double-blind, placebo-controlled, three-arm crossover study. Pain. 2015;156(11):2286–94. https://doi.org/10.1097/j.pain.0000000000000284.

    Article  CAS  PubMed  Google Scholar 

  2. Adedapo AA, Sofidiya MO, Maphosa V, Moyo B, Masika PJ, Afolayan AJ. Anti-inflammatory and analgesic activities of the aqueous extract of Cussonia paniculata stem bark. Rec Nat Prod. 2008;2(2):46–53.

    Google Scholar 

  3. Rosenberg NL, Lovejoy B. CHAPTER 11 - work-related low Back pain. In: Rosenberg NL, editor. Occupational and Environmental Neurology: Butterworth-Heinemann. 1995:279–308.

  4. Khan MA, Raza F, Khan IA. Pain: history. Culture and Philosophy Acta Med-Hist Adriat. 2015;13(1):113–30.

    PubMed  Google Scholar 

  5. Afzal M, Gupta G, Kazmi I, Rahman M, Afzal O, Alam J et al. Anti-inflammatory and analgesic potential of a novel steroidal derivative from Bryophyllum pinnatum. Fitoterapia. 2012;83(5):853–8. doi:https://doi.org/10.1016/j.fitote.2012.03.013.

  6. Li C, Chen M, Li X, Yang M, Wang Y, Yang X. Purification and function of two analgesic and anti-inflammatory peptides from coelomic fluid of the earthworm, Eisenia foetida. Peptides. 2017;89:71–81. doi:https://doi.org/10.1016/j.peptides.2017.01.016.

  7. Muhammad N, Lal Shrestha R, Adhikari A, Wadood A, Khan H, Khan AZ, et al. First evidence of the analgesic activity of govaniadine, an alkaloid isolated from Corydalis govaniana wall. Nat Prod Res. 2014;29(5):430–7. https://doi.org/10.1080/14786419.2014.951933.

    Article  CAS  PubMed  Google Scholar 

  8. Tedore T, Weinberg R, Witkin L, Giambrone GP, Faggiani SL, Fleischut PM. Acute pain management/regional anesthesia. Anesthesiol Clin. 2015;33(4):739–51. https://doi.org/10.1016/j.anclin.2015.07.005.

    Article  PubMed  Google Scholar 

  9. Argoff CE. Recent management advances in acute postoperative pain. Pain Pract. 2014;14(5):477–87. https://doi.org/10.1111/papr.12108.

    Article  PubMed  Google Scholar 

  10. Odoma S, Umar Zezi A, Mohammed Danjuma N, Ahmed A, Garba Magaji M. Elucidation of the possible mechanism of analgesic actions of butanol leaf fraction of Olax subscorpioidea Oliv. Journal of Ethnopharmacology. 2017;199:323–7. doi:https://doi.org/10.1016/j.jep.2016.12.052.

  11. Rauf A, Ali J, Khan H S, Mubarak M, Patel S. Emerging CAM Ziziphus nummularia with in vivo sedative-hypnotic, antipyretic and analgesic attributes. 3Biotech. 2016;6:11–20.

  12. Crofford LJ. Chronic pain: where the body meets the brain. Trans Am Clin Climatol Assoc. 2015;126:167–83.

    PubMed  PubMed Central  Google Scholar 

  13. Gatchel RJ, McGeary DD, McGeary CA, Lippe B. Interdisciplinary chronic pain management: past, present, and future. Am Psychol. 2014;69(2):119–30. https://doi.org/10.1037/a0035514.

    Article  PubMed  Google Scholar 

  14. Rauf A, Khan R, Raza M, Khan H, Pervez S, De Feo V et al. Suppression of inflammatory response by chrysin, a flavone isolated from Potentilla evestita Th. Wolf. In silico predictive study on its mechanistic effect. Fitoterapia. 2015;103(0):129–35. doi:https://doi.org/10.1016/j.fitote.2015.03.019.

  15. Shchegol'kov EV, Shchur IV, Burgart YV, Saloutin VI, Trefilova AN, Ljushina GA et al. Polyfluorinated salicylic acid derivatives as analogs of known drugs: Synthesis, molecular docking and biological evaluation. Bioorganic and Medicinal Chemistry. 2017;25(1):91–9. doi:https://doi.org/10.1016/j.bmc.2016.10.014.

  16. Qadir MI, Abbas K, Hamayun R, Ali M. Analgesic, anti-inflammatory and anti-pyretic activities of aqueous ethanolic extract of Tamarix aphylla L.(Saltcedar) in mice. Pak J Pharm Sci. 2014;27(6):1985–8.

    PubMed  Google Scholar 

  17. Ali M, Rauf A, Ben Hadda T, Bawazeer S, Abu-Izneid T, Khan H, et al. Mechanisms underlying anti-hyperalgesic properties of Kaempferol-3, 7-di-O-α-L-rhamnopyranoside isolated from Dryopteris cycadina. Curr Top Med Chem. 2017;17:383–90.

    CAS  PubMed  Google Scholar 

  18. Isacchi B, Iacopi R, Bergonzi MC, Ghelardini C, Galeotti N, Norcini M, et al. Antihyperalgesic activity of verbascoside in two models of neuropathic pain. J Pharm Pharmacol. 2011;63(4):594–601.

    CAS  PubMed  Google Scholar 

  19. Zajaczkowska R, Kocot-Kepska M, Leppert W, Wrzosek A, Mika J, Wordliczek J. Mechanisms of Chemotherapy-Induced Peripheral Neuropathy. International journal of molecular sciences. 2019;20(6). doi:https://doi.org/10.3390/ijms20061451.

  20. Reis-Pina P, Lawlor PG, Barbosa A. Cancer-related pain management and the optimal use of opioids. Acta Medica Port. 2015;28(3):376–81.

    Google Scholar 

  21. Rauf A, Uddin G, Khan H, Siddiqui BS, Arfan M. Anti-hyperalgesic activity of crude extract and 7-methyljuglone of Diospyros lotus roots. Nat Prod Res. 2015;29(23):2226–9. https://doi.org/10.1080/14786419.2014.1003297.

    Article  CAS  PubMed  Google Scholar 

  22. Rauf A, Uddin G, Siddiqui BS, Khan H, Shah SUA, Hadda TB et al. Antinociceptive and anti-inflammatory activities of flavonoids isolated from Pistacia integerrima galls. Complementary Therapies in Medicine. 2016;25:132–8. doi:https://doi.org/10.1016/j.ctim.2016.02.002.

  23. Li JX, Zhang Y. Emerging drug targets for pain treatment. Eur J Pharmacol. 2012;681(1–3):1–5. https://doi.org/10.1016/j.ejphar.2012.01.017.

    Article  CAS  PubMed  Google Scholar 

  24. Yan YY, Li CY, Zhou L, Ao LY, Fang WR, Li YM. Research progress of mechanisms and drug therapy for neuropathic pain. Life Sci. 2017;190:68–77. https://doi.org/10.1016/j.lfs.2017.09.033.

    Article  CAS  PubMed  Google Scholar 

  25. Cirino TJ, Eans SO, Medina JM, Wilson LL, Mottinelli M, Intagliata S, et al. Characterization of sigma 1 receptor antagonist CM-304 and its analog, AZ-66: novel therapeutics against Allodynia and induced pain. Front Pharmacol. 2019;10:678. https://doi.org/10.3389/fphar.2019.00678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Romeo G, Prezzavento O, Intagliata S, Pittala V, Modica MN, Marrazzo A, et al. Synthesis, in vitro and in vivo characterization of new benzoxazole and benzothiazole-based sigma receptor ligands. Eur J Med Chem. 2019;174:226–35. https://doi.org/10.1016/j.ejmech.2019.04.056.

    Article  CAS  PubMed  Google Scholar 

  27. Modica MN, Lacivita E, Intagliata S, Salerno L, Romeo G, Pittala V, et al. Structure-activity relationships and therapeutic potentials of 5-HT7 receptor ligands: an update. J Med Chem. 2018;61(19):8475–503. https://doi.org/10.1021/acs.jmedchem.7b01898.

    Article  CAS  PubMed  Google Scholar 

  28. Raziq N, Saeed M, Shahid M, Muhammad N, Khan H, Gul F. Pharmacological basis for the use of Hypericum oblongifolium as a medicinal plant in the management of pain, inflammation and pyrexia. BMC Alternative Complimentary Medicine. 2016;16:41–7.

    Google Scholar 

  29. Ullah H, Khan H. Anti-Parkinson Potential of Silymarin: Mechanistic Insight and Therapeutic Standing. Frontiers in Pharmacology. 2018;9(422). doi:https://doi.org/10.3389/fphar.2018.00422.

  30. Zafar M, Khan H, Rauf A, Khan A, Lodhi MA. In silico study of alkaloids as α-glucosidase inhibitors: Hope for the discovery of effective lead compounds. Frontiers in Endocrinology. 2016;7(153). doi:https://doi.org/10.3389/fendo.2016.00153.

  31. Amin S, Khan H. Revival of natural products: utilization of modern technologies. Current Bioactive Compounds. 2016;12(2):103–6.

    CAS  Google Scholar 

  32. Semwal K, Badoni Semwal R, Semwal R, Jacob V, Singh G. Analgesic and antipyretic activities of Gindarudine, a morphine alkaloid from Stephania glabra. Current Bioactive Compounds. 2011;7(3):214–7.

    CAS  Google Scholar 

  33. Fazel Nabavi S, Braidy N, Habtemariam S, Sureda A, Manayi A, Mohammad NS. Neuroprotective effects of fisetin in alzheimer's and parkinson's diseases: from chemistry to medicine. Curr Top Med Chem. 2016;16(17):1910–5.

    Google Scholar 

  34. Rehman S, Khan H. Advances in antioxidant potential of natural alkaloids. Current Bioactive Compounds. 2017;13(2):101–8.

    CAS  Google Scholar 

  35. Khan H, Amin S, Patel S. Targeting BDNF modulation by plant glycosides as a novel therapeutic strategy in the treatment of depression. Life Sci. 2018;196:18–27. https://doi.org/10.1016/j.lfs.2018.01.013.

    Article  CAS  PubMed  Google Scholar 

  36. Khan H. Medicinal plants in light of history recognized therapeutic modality. Journal of Evidence-based Complementary and Alternative Medicine. 2014;19(3):216–9.

    PubMed  Google Scholar 

  37. Khan H, Nabavi SM, Sureda A, Mehterov N, Gulei D, Berindan-Neagoe I, et al. Therapeutic potential of songorine, a diterpenoid alkaloid of the genus aconitum. Eur J Med Chem. 2018;153(10):29–33. https://doi.org/10.1016/j.ejmech.2017.10.065.

    Article  CAS  PubMed  Google Scholar 

  38. Khan H, Rengasamy KRR, Pervaiz A, Nabavi SM, Atanasov AG, Kamal MA. Plant-derived mPGES-1 inhibitors or suppressors: a new emerging trend in the search for small molecules to combat inflammation. Eur J Med Chem. 2018;153:2–28. https://doi.org/10.1016/j.ejmech.2017.12.059.

    Article  CAS  PubMed  Google Scholar 

  39. Bartnik M, Facey PC. Chapter 8 - glycosides A2 - Badal, Simone. In: Delgoda R, editor. Pharmacognosy. Boston: Academic Press; 2017. p. 101–61.

    Google Scholar 

  40. Deshpande PO, Mohan V, Pore MP, Gumaste S, Thakurdesai PA. Prenatal developmental toxicity study of glycosides-based standardized fenugreek seed extract in rats. Pharmacogn Mag. 2017;13(Suppl 1):S135–41.

    PubMed  PubMed Central  Google Scholar 

  41. Fan B-Y, Li Z-R, Ma T, Gu Y-C, Zhao H-J, Luo J-G et al. Further screening of the resin glycosides in the edible water spinach and characterisation on their mechanism of anticancer potential. Journal of Functional Foods. 2015;19, Part A:141–54. doi:https://doi.org/10.1016/j.jff.2015.09.027.

  42. Kallemeijn WW, Witte MD, Wennekes T, Aerts JMFG. Chapter 4 - Mechanism-Based Inhibitors of Glycosidases: Design and Applications. In: Derek H, editor. Advances in Carbohydrate Chemistry and Biochemistry. Academic Press; 2014. p. 297–338.

  43. Kandhare AD, Bodhankar SL, Mohan V, Thakurdesai PA. Acute and repeated doses (28 days) oral toxicity study of glycosides based standardized fenugreek seed extract in laboratory mice. Regul Toxicol Pharmacol. 2015;72(2):323–34. https://doi.org/10.1016/j.yrtph.2015.05.003.

    Article  CAS  PubMed  Google Scholar 

  44. Kang L-P, Zhang J, Cong Y, Li B, Cheng-qi X, et al. Steroidal glycosides from the rhizomes of Anemarrhena asphodeloides and their antiplatelet aggregation activity. Planta Med. 2012;78:611–6.

    CAS  PubMed  Google Scholar 

  45. Khan H, Khan Z, Amin S, Mabkhot YN, Mubarak MS, Hadda TB, et al. Plant bioactive molecules bearing glycosides as lead compounds for the treatment of fungal infection: a review. Biomed Pharmacother. 2017;93:498–509. https://doi.org/10.1016/j.biopha.2017.06.077.

    Article  CAS  PubMed  Google Scholar 

  46. Khan H, Saeedi M, Nabavi S, Mubarak M, Bishayee A. Glycosides from medicinal plants as potential anticancer agents: Emerging trends towards future drugs. Current Medicinal Chemistry. 2018;DOI : https://doi.org/10.2174/0929867325666180403145137.

  47. Khan H, Pervaiz A, Kamal MA, Patel S. Antiplatelet potential of plant-derived glycosides as possible lead compounds. Curr Drug Metab. 2018;19:856–62.

    CAS  PubMed  Google Scholar 

  48. Datta B, Datta S, Chowdhury M, Khan T, Kundu J, Rashid M, et al. Analgesic, antiinflammatory and CNS depressant activities of sesquiterpenes and a flavonoid glycoside from Polygonum viscosum. Die Pharmazie-An International Journal of Pharmaceutical Sciences. 2004;59(3):222–5.

    CAS  Google Scholar 

  49. Adedapo AA, Sofidiya MO, Maphosa V, Moyo B, Masika PJ, Afolayan AJ. Anti-inflammatory and analgesic activities of the aqueous extract of Cussonia paniculata stem bark. Record of Natural Products. 2008;2(2):46–53.

    Google Scholar 

  50. Pires JM, Mendes FR, Negri G, Duarte-Almeida JM, Carlini EA. Antinociceptive peripheral effect of Achillea millefolium L. and Artemisia vulgaris L.: both plants known popularly by brand names of analgesic drugs. Phytother Res. 2009;23(2):212–9.

    CAS  PubMed  Google Scholar 

  51. Backhouse N, Rosales L, Apablaza C, Goïty L, Erazo S, Negrete R, et al. Analgesic, anti-inflammatory and antioxidant properties of Buddleja globosa. Buddlejaceae Journal of Ethnopharmacology. 2008;116(2):263–9.

    CAS  PubMed  Google Scholar 

  52. Rodríguez II, Shi Y-P, García OJ, Rodríguez AD, Mayer AM, Sánchez JA, et al. New pseudopterosin and s eco-pseudopterosin diterpene glycosides from two colombian isolates of pseudopterogorgia e lisabethae and their diverse biological activities. J Nat Prod. 2004;67(10):1672–80.

    PubMed  Google Scholar 

  53. Akkol EK, Tatli II, Akdemir ZS. Antinociceptive and anti-inflammatory effects of saponin and iridoid glycosides from Verbascum pterocalycinum var. mutense hub.-Mor. Zeitschrift für Naturforschung C. 2007;62(11–12):813–20.

    CAS  Google Scholar 

  54. Lanher M-C, Fleurentin J, Mortier F, Vinche A, Younos C. Anti-inflammatory and analgesic effects of an aqueous extract of Harpagophytum procumbens. Planta Med. 2007;58:117–23.

    Google Scholar 

  55. Parveen Z, Deng Y, Saeed MK, Dai R, Ahamad W, Yu YH. Antiinflammatory and analgesic activities of Thesium chinense Turcz extracts and its major flavonoids, kaempferol and kaempferol-3-O-glucoside. Yakugaku Zasshi. 2007;127(8):1275–9.

    CAS  PubMed  Google Scholar 

  56. Cárdenas LC, Rodríguez J, Villaverde MC, Riguera R, Cadena R, Otero JA. The analgesic activity of Hedyosmum bonplandianum: flavonoid glycosides. Planta Med. 1993;59(1):26–7.

    PubMed  Google Scholar 

  57. Villar A, Gasco M, Alcaraz M. Anti-inflammatory and anti-ulcer properties of hypolaetin-8-glucoside, a novel plant flavonoid. J Pharm Pharmacol. 1984;36(12):820–3.

    CAS  PubMed  Google Scholar 

  58. Choi J, Shin K-M, Park H-J, Jung H-J, Kim HJ, Lee YS, et al. Anti-inflammatory and antinociceptive effects of sinapyl alcohol and its glucoside syringin. Planta Med. 2004;70(11):1027–32.

    CAS  PubMed  Google Scholar 

  59. Toker G, Küpeli E, Memisoğlu M, Yesilada E. Flavonoids with antinociceptive and anti-inflammatory activities from the leaves of Tilia argentea (silver linden). J Ethnopharmacol. 2004;95(2–3):393–7.

    CAS  PubMed  Google Scholar 

  60. Martinez V, Ramirez T, Lastra A. A comparative study of the analgesic and anti-inflammatory activities of pectolinarin isolated from Cirsium subcoriaceum and linarin isolated from Buddleia cordata. Planta Med. 1998;64:134–7.

    Google Scholar 

  61. Ramesh M, Rao YN, Kumar MR, Rao AVNA, Prabhakar M, Reddy BM. Antinociceptive and anti-inflammatory activity of carumbelloside-I isolated from Caralluma umbellata. J Ethnopharmacol. 1999;68(1):349–52.

    CAS  PubMed  Google Scholar 

  62. De Melo GO. Malvar DdC, Vanderlinde FA, Rocha FF, Pires PA, Costa EA et al. Antinociceptive and anti-inflammatory kaempferol glycosides from Sedum dendroideum. J Ethnopharmacol. 2009;124(2):228–32. https://doi.org/10.1016/j.jep.2009.04.024.

    Article  CAS  PubMed  Google Scholar 

  63. Zhang B, Li JB, Zhang DM, Ding Y, Du GH. Analgesic and anti-inflammatory activities of a fraction rich in gaultherin isolated from Gaultheria yunnanensis (FRANCH.) REHDER. Biol Pharm Bull. 2007;30(3):465–9. https://doi.org/10.1248/bpb.30.465.

    Article  CAS  PubMed  Google Scholar 

  64. Zhang B. He XL, Ding Y. Du GH. Gaultherin, a natural salicylate derivative from Gaultheria yunnanensis: towards a better nonsteroidal anti-inflammatory drug. Eur J Pharmacol. 2006;530(1–2):166–71. https://doi.org/10.1016/j.ejphar.2005.11.030.

  65. Kim M-H, Nugroho A, Choi J, Park JH, Park H-J. Rhododendrin, an analgesic/anti-inflammatory arylbutanoid glycoside, from the leaves of Rhododendron aureum. Arch Pharm Res. 2011;34(6):971–8.

    CAS  PubMed  Google Scholar 

  66. Wang Q-H, Han N-R-C-K-T, Dai N-Y-T WR-J, Wu J-S. Analgesic effects and structural elucidation of two new flavone C-glycosides from Artemisa sacrorum. Chin J Nat Med. 2015;13(10):786–90. https://doi.org/10.1016/S1875-5364(15)30080-7.

    Article  CAS  PubMed  Google Scholar 

  67. Norregaard R, Kwon T-H, Frokiær J. Physiology and pathophysiology of cyclooxygenase-2 and prostaglandin E2 in the kidney. Kidney Research and Clinical Practice. 2015;34(4):194–200. https://doi.org/10.1016/j.krcp.2015.10.004.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Ghannadi A, Hajhashemi V, Jafarabadi H. An investigation of the analgesic and anti-inflammatory effects of Nigella sativa seed polyphenols. J Med Food. 2005;8(4):488–93.

    CAS  PubMed  Google Scholar 

  69. Neto A, Costa J, Belati C, Vinholis A, Possebom L, Da Silva FA, et al. Analgesic and anti-inflammatory activity of a crude root extract of Pfaffia glomerata (Spreng) Pedersen. J Ethnopharmacol. 2005;96(1):87–91.

    CAS  PubMed  Google Scholar 

  70. Gilroy DW, Colville-Nash PR, Willis D, Chivers J, Paul-Clark MJ, Willoughby DA. Inducible cyclooxygenase may have anti-inflammatory properties. Nat Med. 1999;5(6):698–701. https://doi.org/10.1038/9550.

    Article  CAS  PubMed  Google Scholar 

  71. Ballou LR BC, Raghow R. Elucidation of the pathophysiological functions of prostaglandins using cyclooxygenase gene deficient mice. In: Vane JR, Botting RM, eds. Therapeutic roles of selective COX2 inhibitors. London, UK: William Harvey Press 2001:128–67.

  72. Sala A, Zarini S, Bolla M. Leukotrienes: lipid bioeffectors of inflammatory reactions. Biochemistry (Mosc). 1998;63(1):84–92.

    CAS  Google Scholar 

  73. Radmark OP. The molecular biology and regulation of 5-lipoxygenase. Am J Respir Crit Care Med. 2000;161(2 Pt 2):S11–5. https://doi.org/10.1164/ajrccm.161.supplement_1.ltta-3.

    Article  CAS  PubMed  Google Scholar 

  74. Dixon RA, Diehl RE, Opas E, Rands E, Vickers PJ, Evans JF, et al. Requirement of a 5-lipoxygenase-activating protein for leukotriene synthesis. Nature. 1990;343(6255):282–4. https://doi.org/10.1038/343282a0.

    Article  CAS  PubMed  Google Scholar 

  75. Penrose JF, Austen KF, Lam BK. Leukotrienes: biosynthetic pathways, release and receptor-mediated actions with relevance to disease states. In: Gallin JL, Snyderman R, editors. Inflammation basic principles and clinical correlates. Philadelphia: Lippicort Williams & Wilkins; 1999. p. 361–71.

    Google Scholar 

  76. Bray MA, Ford-Hutchinson AW, Smith MJ. Leukotriene B4: an inflammatory mediator in vivo. Prostaglandins. 1981;22(2):213–22. https://doi.org/10.1016/0090-6980(81)90036-8.

    Article  CAS  PubMed  Google Scholar 

  77. Lewis RA, Austen KF, Soberman RJ. Leukotrienes and other products of the 5-lipoxygenase pathway. Biochemistry and relation to pathobiology in human diseases. N Engl J Med. 1990;323(10):645–55. https://doi.org/10.1056/NEJM199009063231006.

    Article  CAS  PubMed  Google Scholar 

  78. Rainsford KD, Ying C, Smith F. Effects of 5-lipoxygenase inhibitors on interleukin production by human synovial tissues in organ culture: comparison with interleukin-1-synthesis inhibitors. J Pharm Pharmacol. 1996;48(1):46–52. https://doi.org/10.1111/j.2042-7158.1996.tb05875.x.

    Article  CAS  PubMed  Google Scholar 

  79. He W, Pelletier JP, Martel-Pelletier J, Laufer S, Di Battista JA. Synthesis of interleukin 1beta, tumor necrosis factor-alpha, and interstitial collagenase (MMP-1) is eicosanoid dependent in human osteoarthritis synovial membrane explants: interactions with antiinflammatory cytokines. J Rheumatol. 2002;29(3):546–53.

    CAS  PubMed  Google Scholar 

  80. Ronchetti S, Migliorati G, Delfino DV. Association of inflammatory mediators with pain perception. Biomed Pharmacother. 2017;96:1445–52. https://doi.org/10.1016/j.biopha.2017.12.001.

    Article  CAS  PubMed  Google Scholar 

  81. McHugh JM, McHugh WB. Pain: neuroanatomy, chemical mediators, and clinical implications. AACN Clin Issues. 2000;11(2):168–78.

    CAS  PubMed  Google Scholar 

  82. Widgerow AD, Kalaria S. Pain mediators and wound healing--establishing the connection. Burns. 2012;38(7):951–9. https://doi.org/10.1016/j.burns.2012.05.024.

    Article  PubMed  Google Scholar 

  83. Gugler R, Leschik M, Dengler HJ. Disposition of quercetin in man after single oral and intravenous doses. Eur J Clin Pharmacol. 1975;9(2–3):229–34. https://doi.org/10.1007/bf00614022.

    Article  CAS  PubMed  Google Scholar 

  84. Graefe EU, Derendorf H, Veit M. Pharmacokinetics and bioavailability of the flavonol quercetin in humans. Int J Clin Pharmacol Ther. 1999;37(5):219–33.

    CAS  PubMed  Google Scholar 

  85. Gee JM, DuPont MS, Day AJ, Plumb GW, Williamson G, Johnson IT. Intestinal transport of quercetin glycosides in rats involves both deglycosylation and interaction with the hexose transport pathway. J Nutr. 2000;130(11):2765–71. https://doi.org/10.1093/jn/130.11.2765.

    Article  CAS  PubMed  Google Scholar 

  86. Crespy V, Morand C, Besson C, Manach C, Demigne C, Remesy C. Comparison of the intestinal absorption of quercetin, phloretin and their glucosides in rats. J Nutr. 2001;131(8):2109–14. https://doi.org/10.1093/jn/131.8.2109.

    Article  CAS  PubMed  Google Scholar 

  87. O'Leary KA, Day AJ, Needs PW, Mellon FA, O'Brien NM, Williamson G. Metabolism of quercetin-7- and quercetin-3-glucuronides by an in vitro hepatic model: the role of human beta-glucuronidase, sulfotransferase, catechol-O-methyltransferase and multi-resistant protein 2 (MRP2) in flavonoid metabolism. Biochem Pharmacol. 2003;65(3):479–91. https://doi.org/10.1016/s0006-2952(02)01510-1.

    Article  CAS  PubMed  Google Scholar 

  88. Jang MH, Lim S, Han SM, Park HJ, Shin I, Kim JW, et al. Harpagophytum procumbens suppresses lipopolysaccharide-stimulated expressions of cyclooxygenase-2 and inducible nitric oxide synthase in fibroblast cell line L929. J Pharmacol Sci. 2003;93(3):367–71. https://doi.org/10.1254/jphs.93.367.

    Article  CAS  PubMed  Google Scholar 

  89. Inaba K, Murata K, Naruto S, Matsuda H. Inhibitory effects of devil's claw (secondary root of Harpagophytum procumbens) extract and harpagoside on cytokine production in mouse macrophages. J Nat Med. 2010;64(2):219–22. https://doi.org/10.1007/s11418-010-0395-8.

    Article  CAS  PubMed  Google Scholar 

  90. Nielsen SE, Breinholt V, Justesen U, Cornett C, Dragsted LO. In vitro biotransformation of flavonoids by rat liver microsomes. Xenobiotica. 1998;28(4):389–401. https://doi.org/10.1080/004982598239498.

    Article  CAS  PubMed  Google Scholar 

  91. Chen Y, Xie S, Chen S, Zeng S. Glucuronidation of flavonoids by recombinant UGT1A3 and UGT1A9. Biochem Pharmacol. 2008;76(3):416–25. https://doi.org/10.1016/j.bcp.2008.05.007.

    Article  CAS  PubMed  Google Scholar 

  92. Yodogawa S, Arakawa T, Sugihara N, Furuno K. Glucurono- and sulfo-conjugation of kaempferol in rat liver subcellular preparations and cultured hepatocytes. Biol Pharm Bull. 2003;26(8):1120–4. https://doi.org/10.1248/bpb.26.1120.

    Article  CAS  PubMed  Google Scholar 

  93. Chen J, Lin H, Hu M. Metabolism of flavonoids via enteric recycling: role of intestinal disposition. J Pharmacol Exp Ther. 2003;304(3):1228–35. https://doi.org/10.1124/jpet.102.046409.

    Article  CAS  PubMed  Google Scholar 

  94. Chen J, Lin H, Hu M. Absorption and metabolism of genistein and its five isoflavone analogs in the human intestinal Caco-2 model. Cancer Chemother Pharmacol. 2005;55(2):159–69. https://doi.org/10.1007/s00280-004-0842-x.

    Article  CAS  PubMed  Google Scholar 

  95. Aquilonius SM, Hartvig P. Clinical pharmacokinetics of cholinesterase inhibitors. Clin Pharmacokinet. 1986;11(3):236–49. https://doi.org/10.2165/00003088-198611030-00005.

    Article  CAS  PubMed  Google Scholar 

  96. Cho JY, Nam KH, Kim AR, Park J, Yoo ES, Baik KU, et al. In-vitro and in-vivo immunomodulatory effects of syringin. J Pharm Pharmacol. 2001;53(9):1287–94. https://doi.org/10.1211/0022357011776577.

    Article  CAS  PubMed  Google Scholar 

  97. Nolan AM. Chapter 3 - pharmacology of analgesic drugs A2 - Flecknell, Paul a. In: Waterman-Pearson A, editor. Pain Management in Animals. Oxford: W.B. Saunders; 2000. p. 21–52.

    Google Scholar 

  98. Hegazy GH, Ali HI. Design, synthesis, biological evaluation, and comparative Cox1 and Cox2 docking of p-substituted benzylidenamino phenyl esters of ibuprofenic and mefenamic acids. Bioorganic and Medicinal Chemistry. 2012;20(3):1259–70. doi:https://doi.org/10.1016/j.bmc.2011.12.030.

  99. Husain A, Ahmad A, Khan SA, Asif M, Bhutani R, Al-Abbasi FA. Synthesis, molecular properties, toxicity and biological evaluation of some new substituted imidazolidine derivatives in search of potent anti-inflammatory agents. Saudi Pharmaceutical Journal. 2016;24(1):104–14. doi:https://doi.org/10.1016/j.jsps.2015.02.008.

  100. Gülçin I, Küfrevioǧlu Öİ, Oktay M, Büyükokuroǧlu ME. Antioxidant, antimicrobial, antiulcer and analgesic activities of nettle (Urtica dioica L.). J Ethnopharmacol. 2004;90(2–3):205–15.

    PubMed  Google Scholar 

  101. Adeoye AT, Adedapo AA, Abatan MO. Study on acute ulcerous pain in rats treated with aqueous root extract of Lonchocarpus cyanescens. Journal of Acute Disease. 2016;5(6):454–7. https://doi.org/10.1016/j.joad.2016.09.002.

    Article  Google Scholar 

  102. Umre R, Ganeshpurkar A, Ganeshpurkar A, Pandey S, Pandey V, Shrivastava A, et al. In vitro, in vivo and in silico antiulcer activity of ferulic acid. Future Journal of Pharmaceutical Sciences. 2018. https://doi.org/10.1016/j.fjps.2018.08.001.

  103. Tomić M, Micov A, Pecikoza U, Stepanović-Petrović R. Chapter 1 - Clinical Uses of Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) and Potential Benefits of NSAIDs Modified-Release Preparations A2 - Čalija, Bojan. Microsized and Nanosized Carriers for Nonsteroidal Anti-Inflammatory Drugs. Boston: Academic Press; 2017. p. 1–29.

  104. Biasutto L, Zoratti M. Prodrugs of quercetin and resveratrol: a strategy under development. Curr Drug Metab. 2014;15(1):77–95.

    CAS  PubMed  Google Scholar 

  105. Intagliata S, Modica MN, Santagati LM, Montenegro L. Strategies to Improve Resveratrol Systemic and Topical Bioavailability: An Update. Antioxidants (Basel, Switzerland). 2019;8(8). doi:https://doi.org/10.3390/antiox8080244.

Download references

Acknowledgements

AGA acknowledges the support from the Polish KNOW (Leading National Research Centre) Scientific Consortium “Healthy Animal-Safe Food” of Ministry of Science and Higher Education (05-1/KNOW2/2015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haroon Khan or Anupam Bishayee.

Ethics declarations

Competing interests

The authors declare that they have no competing interest.

Consent for publication

Not applicable.

Ethics approval and consent to participate

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, H., Pervaiz, A., Intagliata, S. et al. The analgesic potential of glycosides derived from medicinal plants. DARU J Pharm Sci 28, 387–401 (2020). https://doi.org/10.1007/s40199-019-00319-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40199-019-00319-7

Keywords

Navigation