Skip to main content

Advertisement

Log in

Effect of Nanoscale Cu-Riched Clusters on Strength and Impact Toughness in a Tempered Cu-Bearing HSLA Steel

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The effect of Cu-riched clusters on strength and impact toughness in a tempered Cu-bearing high-strength low-alloy (HSLA) steel is investigated. With increasing the tempering temperature, it is found that the yield strength increases firstly, achieving the maximum value (~ 1053 MPa) at the tempering temperature of 450 °C, and then decreases significantly with the rise of tempering temperature. The tempering temperature-dependent yield strength is closely related to the precipitation of Cu-riched clusters. When tempering at 450 °C, the peak strength will be reached as the nanoscale Cu-riched clusters with small size and high number density will cause a strong precipitation strengthening (~ 492 MPa) due to the dislocation shearing mechanism. However, the Cu-riched clusters will coarsen with further increasing tempering temperature, resulting in obvious decrement of yield strength owing to the dislocation bypassing mechanism. Compared with the yield strength, the variation in impact energy displays an inverse tendency and the impact energy is only 7 J for the sample tempered at 450 °C. The fracture mode can be well explained by the competition between the cleavage fracture strength (σF) and “yield strength” (σY). Although transgranular cleavage fracture can be found in samples tempered at 450 and 550 °C, the crack propagation along the lath boundaries is prevented in the sample tempered at 550 °C. The reason is that the number density of Cu-riched clusters at lath boundaries decreases and the segregation of Mo element at the lath boundaries is induced, which will increase the bonding energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. A. Ghosh, B. Mishra, S. Das, S. Chatterjee, Mater. Sci. Eng. A 396, 320 (2005)

    Article  Google Scholar 

  2. M. Kapoor, D. Isheim, G. Ghosh, S. Vaynman, M.E. Fine, Y.W. Chung, Acta Mater. 73, 56 (2014)

    Article  CAS  Google Scholar 

  3. Z.B. Jiao, J.H. Luan, Z.W. Zhang, M.K. Miller, W.B. Ma, C.T. Liu, Acta Mater. 61, 5996 (2013)

    Article  CAS  Google Scholar 

  4. Q.D. Liu, Y.H. Chen, C.W. Li, J.F. Gu, Acta Metall. Sin. -Engl. Lett. 31, 465 (2018)

    Article  CAS  Google Scholar 

  5. Z.B. Jiao, J.H. Luan, M.K. Miller, C.T. Liu, Acta Mater. 97, 58 (2015)

    Article  CAS  Google Scholar 

  6. Z.Y. Zhang, F. Chai, X.B. Luo, G. Chen, C.F. Yang, H. Su, Acta Metall. Sin. 55, 783 (2019)

    CAS  Google Scholar 

  7. Y. Zou, Y.B. Xu, D.T. Han, Z.P. Hu, H. Song, R.D.K. Misra, L.F. Cao, S.Q. Chen, Mater. Sci. Eng. A 729, 423 (2018)

    Article  CAS  Google Scholar 

  8. S.K. Dhua, D. Mukerjee, D.S. Sarma, Metall. Mater. Trans. A 32, 2259 (2001)

    Article  Google Scholar 

  9. Y. Zhao, X. Tong, X.H. Wei, S.S. Xu, S. Lan, X.L. Wang, Z.W. Zhang, Int. J. Plast. 116, 203 (2019)

    Article  CAS  Google Scholar 

  10. S.W. Thompson, Mater. Sci. Eng. A 711, 424 (2018)

    Article  CAS  Google Scholar 

  11. M. Kapoor, D. Isheim, S. Vaynman, M.E. Fine, Y.W. Chung, Acta Mater. 104, 166 (2016)

    Article  CAS  Google Scholar 

  12. Y.B. Du, X.F. Hu, S.Q. Zhang, Y.Y. Song, H.C. Jiang, L.J. Rong, Acta Metall. Sin. 56, 1343 (2020)

    CAS  Google Scholar 

  13. Z. Arechabaleta, P.V. Liempt, J. Sietsma, Acta Mater. 115, 314 (2016)

    Article  CAS  Google Scholar 

  14. F. HajyAkbary, J. Sietsma, A.J. Böttger, M.J. Santofimia, Mater. Sci. Eng. A 639, 208 (2015)

    Article  CAS  Google Scholar 

  15. J. Sun, S.T. Wei, S.P. Lu, Mater. Sci. Eng. A 772, 138739 (2020)

    Article  CAS  Google Scholar 

  16. D. Jain, D. Isheim, A.H. Hunter, D.N. Seidman, Metall. Mater. Trans. A 47, 3860 (2016)

    Article  CAS  Google Scholar 

  17. H.W. Luo, X.H. Wang, Z.B. Liu, Z.Y. Yang, J. Mater. Sci. Technol. 51, 130 (2020)

    Article  Google Scholar 

  18. N.S. Lim, C.W. Bang, S. Das, H.W. Jin, R. Ayer, Met. Mater. Int. 18, 87 (2012)

    Article  CAS  Google Scholar 

  19. Z.T. Li, F. Chai, L. Yang, X.B. Luo, C.F. Yang, Mater. Des. 191, 108637 (2020)

    Article  CAS  Google Scholar 

  20. G. Salje, M.F. Kniepmeier, J. Appl. Phys. 48, 1833 (1977)

    Article  CAS  Google Scholar 

  21. Y.J. Li, D. Ponge, P. Choi, D. Raabe, Scr. Mater. 96, 13 (2015)

    Article  CAS  Google Scholar 

  22. Q.D. Liu, S.J. Zhao, MRS Commun. 2, 127 (2012)

    Article  CAS  Google Scholar 

  23. N. Kamikawa, K. Sato, G. Miyamoto, M. Murayama, N. Sekido, K. Tsuzaki, T. Furuhara, Acta Mater. 83, 383 (2015)

    Article  CAS  Google Scholar 

  24. Q.L. Yong, Second Phases in Structural Steels (Metallurgical Industry Press, Beijing, 2006), p. 8

    Google Scholar 

  25. J.E. Bailey, P.B. Hirsch, Philos. Mag. 5, 485 (1960)

    Article  CAS  Google Scholar 

  26. M. Huang, P.E.J. Rivera, O. Bouaziz, S. Zwaag, Mater. Sci. Technol. 25, 833 (2013)

    Article  Google Scholar 

  27. Y.R. Wen, A. Hirata, Z.W. Zhang, T. Fujita, C.T. Liu, J.H. Jiang, M.W. Chen, Acta Mater. 61, 2133 (2013)

    Article  CAS  Google Scholar 

  28. M.E. Fine, D. Isheim, Scr. Mater. 53, 115 (2005)

    Article  CAS  Google Scholar 

  29. K.C. Russell, L.M. Browns, Acta Mater. 20, 969 (1972)

    Article  CAS  Google Scholar 

  30. C.R. Hutchinson, M. Goune, A. Redjaimia, Acta Mater. 55, 213 (2007)

    Article  CAS  Google Scholar 

  31. S.S. Xu, Y. Zhao, D. Chen, L.W. Sun, L. Chen, X. Tong, C.T. Liu, Z.W. Zhang, Int. J. Plast. 113, 99 (2019)

    Article  CAS  Google Scholar 

  32. H.J. Kong, C. Xu, C.C. Bu, C. Da, J.H. Luan, Z.B. Jiao, G. Chen, C.T. Liu, Acta Mater. 172, 150 (2019)

    Article  CAS  Google Scholar 

  33. J.Z. Tan, Acta Metall. Sin. -Engl. Lett. 17, 139 (2004)

    CAS  Google Scholar 

  34. Q.D. Liu, H.M. Wen, H. Zhang, J.F. Gu, C.W. Li, E.J. Lavernia, Metall. Mater. Trans. A 47, 1960 (2016)

    Article  CAS  Google Scholar 

  35. Z.Z. Chen, N. Kioussis, N. Ghoniem, Phys. Rev. B 80, 184104 (2009)

    Article  Google Scholar 

  36. S.Y. Hu, Y.L. Li, K. Watanabe, Model. Simul. Mater. Sc. 7, 641 (1999)

    Article  CAS  Google Scholar 

  37. S.Q. Zhang, X.F. Hu, Y.B. Du, H.C. Jiang, H.Y. Pang, L.J. Rong, Acta Metall. Sin. 56, 1227 (2020)

    CAS  Google Scholar 

  38. W.C. Dong, M.Y. Wen, H.Y. Pang, S.P. Lu, Acta Metall. Sin. -Engl. Lett. 33, 391 (2020)

    Article  CAS  Google Scholar 

  39. X.B. Shi, W. Yan, M.C. Yan, W. Wang, Z.G. Yang, Y.Y. Shan, K. Yang, Acta Metall. Sin. -Engl. Lett. 30, 601 (2017)

    Article  CAS  Google Scholar 

  40. Y.H. Li, Z.H. Jiang, Z.D. Yang, J.S. Zhu, Acta Metall. Sin. -Engl. Lett. 33, 1346 (2020)

    Article  CAS  Google Scholar 

  41. T. Hanamura, F. Yin, K. Nagai, ISIJ Int. 44, 610 (2004)

    Article  CAS  Google Scholar 

  42. J.W. Morris, ISIJ Int. 51, 1569 (2011)

    Article  CAS  Google Scholar 

  43. P. Lejcek, Grain Boundary Segregation in Metals (Springer, Berlin, Heidelberg, 2010), p. 177

    Book  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2016YFB0300601), the Liaoning Revitalization Talents Program (No. XLYC1907143), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDC04000000) and the Liaoning Natural Science Foundation (No. 2020-MS-008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaofeng Hu or Lijian Rong.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Y., Hu, X., Song, Y. et al. Effect of Nanoscale Cu-Riched Clusters on Strength and Impact Toughness in a Tempered Cu-Bearing HSLA Steel. Acta Metall. Sin. (Engl. Lett.) 35, 537–550 (2022). https://doi.org/10.1007/s40195-021-01277-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-021-01277-3

Keywords

Navigation