Skip to main content
Log in

Electrodeposited Ni–W–TiC Composite Coatings: Effect of TiC Reinforcement on Microstructural and Tribological Properties

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Ni–W–TiC composite coatings were prepared via electrodeposition technique by dispersing the different amount of TiC particles into the plating bath. The Ni–W and Ni–W–TiC composite coatings containing different concentrations of TiC particles were characterized by using the scanning electron microscope, X-ray diffraction technique, Vickers microhardness test, surface roughness test, and tribology test. The results show that the Ni–W coatings containing reinforced TiC particles have shown a typical FCC Ni–W crystal structure with significantly higher Vickers microhardness. The amount of dispersed TiC particles into the plating bath considerably affected codeposition weight percent of TiC into the Ni–W matrix, as revealed by the EDS analysis. Ni–W–TiC samples demonstrated the decreased abrasive wear as compared to Ni–W coating and no characteristic features observed for the adhesive wear. Similarly, an improvement in  coefficient of friction was observed in Ni–W–TiC composite coating as compared to Ni–W coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Z. Mahidashti, M. Aliofkhazraei, N. Lotfi, Trans. Indian Inst. Met. 71, 257 (2018)

    Article  CAS  Google Scholar 

  2. W. Jiang, L. Shen, M. Xu, Z. Wang, Z. Tian, J. Alloys Compd. 791, 847 (2019)

    Article  CAS  Google Scholar 

  3. I. Gurrappa, L. Binder, Sci. Technol. Adv. Mater. 9, 043001 (2008)

    Article  Google Scholar 

  4. G. Gyawali, K. Tripathi, B. Joshi, S.W. Lee, J. Alloys Compd. 721, 757 (2017)

    Article  CAS  Google Scholar 

  5. F. Su, C. Liu, P. Huang, Appl. Surf. Sci. 309, 200 (2014)

    Article  CAS  Google Scholar 

  6. N. Tsyntsaru, H. Cesiulis, M. Donten, J. Sort, E. Pellicer, E.J. Podlaha-Murphy, Surf. Eng. Appl. Electrochem. 48, 491 (2012)

    Article  Google Scholar 

  7. H.A. Kishawy, in: Mach. Technol. Compos. Mater. (Elsevier, 2012), p. 3–16.

  8. J.W. Kaczmar, K. Pietrzak, W. Włosiński, J. Mater. Process. Technol. 106, 58 (2000)

    Article  Google Scholar 

  9. R. Casati, M. Vedani, Metals (Basel) 4, 65 (2014)

    Article  Google Scholar 

  10. D. Miracle, Compos. Sci. Technol. 65, 2526 (2005)

    Article  CAS  Google Scholar 

  11. G. Gyawali, R. Adhikari, H.S. Kim, H.-B. Cho, S.W. Lee, ECS Electrochem Lett. 2, C7 (2013)

    Article  CAS  Google Scholar 

  12. A. Emamian, S.F. Corbin, A. Khajepour, Surf. Coat. Technol. 206, 4495 (2012)

    Article  CAS  Google Scholar 

  13. K.H. Hou, Y.C. Chen, Appl. Surf. Sci. 257, 6340 (2011)

    Article  CAS  Google Scholar 

  14. B. Li, W. Zhang, W. Zhang, Y. Huan, J. Alloys Compd. 702, 38 (2017)

    Article  CAS  Google Scholar 

  15. F. Akhtar, S.J. Guo, Mater. Charact. 59, 84 (2008)

    Article  CAS  Google Scholar 

  16. L. Benea, N. Ege Caron, O. Raquet, RCS Adv. 6, 59775 (2016)

    CAS  Google Scholar 

  17. L. Benea, J.P. Celis, Materials (Basel). 9, 269 (2016)

    Article  Google Scholar 

  18. K. Zielińska, A. Stankiewicz, I. Szczygieł, J. Colloid Interface Sci. 377, 362 (2012)

    Article  Google Scholar 

  19. G. Gyawali, S.H. Cho, D.J. Woo, S.W. Lee, Trans. Inst. Met. Finish. 90, 274 (2012)

    Article  CAS  Google Scholar 

  20. Y. Zhu, Y. Chen, C. Zhu, X. Shen, Acta Metall. Sin. (Engl. Lett.) 23, 409 (2010).

    CAS  Google Scholar 

  21. E. Bełtowska-Lehman, A. Góral, P. Indyka, Arch. Metall. Mater. 56, 924 (2011).

    Article  Google Scholar 

  22. K. Arunsunai Kumar, G. Paruthimal Kalaignan, V.S. Muralidharan, Ceram. Int. 39, 2827 (2013).

    Article  CAS  Google Scholar 

  23. S. Dehgahi, R. Amini, M. Alizadeh, J. Alloys Compd. 692, 622 (2017)

    Article  CAS  Google Scholar 

  24. K.H. Hou, H.T. Wang, H.H. Sheu, M.D. Ger, Appl. Surf. Sci. 308, 372 (2014)

    Article  CAS  Google Scholar 

  25. A.J.W. Moore, W.J.M. Tegart, F.P. Bowden, Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 212, 452 (1952)

    Google Scholar 

  26. X.J. Sun, J.G. Li, Tribol. Lett. 28, 223 (2007)

    Article  CAS  Google Scholar 

  27. Y.J. Dong, H.M. Wang, Surf. Coat. Technol. 204, 731 (2009)

    Article  CAS  Google Scholar 

  28. M.A. Chowdhury, M.K. Khalil, D.M. Nuruzzaman, M.L. Rahaman, Int. J. Mech. Mech. Eng. 11, 53 (2011)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the “International standardization of nickel-phosphorous ceramics electroless composite plating for industrial use” program through the “Korea Evaluation Institute of Industrial Technology” of Korea funded by the Ministry of Science, ICT and Future planning (Grant No. 10080067)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gobinda Gyawali.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, J.H., Gyawali, G., Dhakal, D.R. et al. Electrodeposited Ni–W–TiC Composite Coatings: Effect of TiC Reinforcement on Microstructural and Tribological Properties. Acta Metall. Sin. (Engl. Lett.) 33, 573–582 (2020). https://doi.org/10.1007/s40195-019-00996-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-019-00996-y

Keywords

Navigation