Skip to main content
Log in

Equal channel angular pressing of tubular samples

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

A new technique to equal channel angular pressing of tubular samples has been proposed and investigated through experiments and simulations. Deformation behavior of copper tube sample was numerically analyzed during the first pass of tubular ECAP process. The investigation included the effect of various tube wall thicknesses on the effective strain magnitude and strain distribution uniformity. It is shown that tube wall thickness of 3.5 mm gives the optimum value for strain behavior. In addition, copper tube specimens with 3.5 mm wall thickness have been successfully ECAPed up to four passes with the die channel angle of 90° using flexible polyurethane rubber pad. Micro-hardness measurements on both annealed and ECAPed tubes show that 33% and 57% increases in hardness value and also, 50% and 70% reductions in the grain size were achieved after the first and fourth passes respectively. Furthermore, tube wall thickness measurements show that the process does not change the dimension of deformed specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.Z. Valiev and T.G. Langdon, Prog. Mater. Sci. 51 (2006) 881.

    Article  CAS  Google Scholar 

  2. M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto and T.G. Langdon, Mater. Sci. Eng. A 257 (1998) 328.

    Article  Google Scholar 

  3. T. Aida, K. Matsuki, Z. Horita and T.G. Langdon, Scr. Mater. 44 (2001) 575.

    Article  CAS  Google Scholar 

  4. A.V. Sergueeva, V.V. Stolyarov, R.Z. Valiev and A.K. Mukherjeeb, Scr. Mater. 43 (2000) 819.

    Article  CAS  Google Scholar 

  5. R. Mahmudi, R. Alizadeh and A.R. Geranmayeh, Scr. Mater. 64 (2011) 521.

    Article  CAS  Google Scholar 

  6. W.J. Kim, C.W. An, Y.S. Kim and S.I. Hong, Scr. Mater. 47 (2002) 39.

    Article  CAS  Google Scholar 

  7. A.P. Zhilyaev and T.G. Langdon, Prog. Mater. Sci. 53 (2008) 893.

    Article  CAS  Google Scholar 

  8. Y. Beygelzimer, V. Varyukhin, S. Synkov and D. Orlov, Mater. Sci. Eng. A 503 (2009) 14.

    Article  Google Scholar 

  9. S.M. Fatemi-Varzaneh and A. Zarei-Hanzaki, Mater. Sci. Eng. A 504 (2009) 104.

    Article  Google Scholar 

  10. S. Biswas and S. Suwas, Scr. Mater. 66 (2012) 89.

    Article  CAS  Google Scholar 

  11. Y.J. Chen, Q.D. Wang, H.J. Roven, M.P. Liu, M. Karlsen, Y.D. Yu and J. Hjelen, Scr. Mater. 58 (2008) 311.

    Article  CAS  Google Scholar 

  12. J.C. Lee, H.K. Seok and J.Y. Suh, Acta Mater. 50 (2002) 4005.

    Article  CAS  Google Scholar 

  13. Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai and R.G. Hong, Scr. Mater. 39 (1998) 1221.

    Article  CAS  Google Scholar 

  14. D.H. Shin, J.J. Park, Y.S. Kim and K.T. Park, Mater. Sci. Eng. A 328 (2002) 98.

    Article  Google Scholar 

  15. R. Neugebauer, R. Glass, M. Kolbe and M. Hoffmann, J. Mater. Process. Technol. 125–126 (2002) 856.

    Article  Google Scholar 

  16. A. Pougis, L.S. Tóth, O. Bouaziz, J.J. Fundenberger, D. Barbier and R. Arruffat, Scr. Mater. 66 (2012) 773.

    Article  CAS  Google Scholar 

  17. M.S. Mohebbi and A. Akbarzadeh, Mater. Sci. Eng. A 528 (2010) 180.

    Article  Google Scholar 

  18. G. Faraji, M.M. Mashhadi and H.S. Kim, Mater. Lett. 65 (2011) 3009.

    Article  CAS  Google Scholar 

  19. A. Ma, Y. Nishida, K. Suzuki, I. Shigematsu and N. Saito, Scr. Mater. 52 (2005) 433.

    Article  CAS  Google Scholar 

  20. G. Purcek, O. Saray, O. Kul, I. Karaman, G.G. Yapici, M. Haouaoui and H.J. Maier, Mater. Sci. Eng. A 517 (2009) 97.

    Article  Google Scholar 

  21. A.V. Nagasekhar and H.S. Kim, Computational Mater. Sci. 43 (2008) 1069.

    Article  CAS  Google Scholar 

  22. A. Azushima and K. Aoki, Mater. Sci. Eng. A 337 (2002) 45.

    Article  Google Scholar 

  23. F. Djavanroodi, M. Daneshtalab and M. Ebrahimi, Mater. Sci. Eng. A 535 (2012) 115.

    Article  CAS  Google Scholar 

  24. R. Neugebauer, R. Glass and M. Hoffmann, CIRP Ann.-Manuf. Technol. 54 (2005) 241.

    Article  Google Scholar 

  25. L.S. Tóth, M. Arzaghi, J.J. Fundenberger, B. Beausir, O. Bouaziz and R. Arruffat-Massion, Scr. Mater. 60 (2009) 175.

    Article  Google Scholar 

  26. M.S. Mohebbi and A. Akbarzadeh, J. Mater. Process. Technol. 210 (2010) 510.

    Article  CAS  Google Scholar 

  27. A.V. Nagasekhar, U. Chakkingal and P. Venugopal, J. Mater. Process. Technol. 173 (2006) 53.

    Article  CAS  Google Scholar 

  28. A. Zangiabadi and M. Kazeminezhad, Mater. Sci. Eng. A 528 (2011) 5066.

    Article  CAS  Google Scholar 

  29. M. Borhani and F. Djavanroodi, Mater. Sci. Eng. A 546 (2012) 1.

    Article  CAS  Google Scholar 

  30. V.P. Basavaraj, U. Chakkingal and T.S.P. Kumar, J. Mater. Process. Technol. 209 (2009) 89.

    Article  Google Scholar 

  31. Q. Xue, I.J. Beyerlein, D.J. Alexander and G.T. Gray III, Acta Mater. 55 (2007) 655.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Djavanroodi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Djavanroodi, F., Zolfaghari, A.A., Ebrahimi, M. et al. Equal channel angular pressing of tubular samples. ACTA METALL SIN 26, 574–580 (2013). https://doi.org/10.1007/s40195-013-0102-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-013-0102-3

Key Words

Navigation