Skip to main content
Log in

Microstructure evolution and grain coarsening behaviour during partial remelting of cyclic extrusion compression formed AZ61 magnesium alloy

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The effects of CEC passes, isothermal holding time and reheating temperature on the microstructure evolution and grain coarsening behaviour of AZ61 magnesium alloy produced by the recrystallisation and partialmelting (RAP) process were investigated. Before partial remelting, as-cast AZ61 alloy was deformed by cyclic extrusion compression (CEC) with one pass and two pass at 330 °C. After CEC, the microstructure consisted of unrecrystallized grains and deformed eutectic compounds. Increasing isothermal holding time resulted in the formation of spheroidal grains surrounded by liquid films. With increasing the isothermal holding time, the solid grain size increased and the degree of spheroidization was improved. With increasing the reheating temperature, namely increasing liquid fraction, the solid grain size obviously decreased during the period from 560 °C to 570 °C and then slightly increased after 570 °C, while the shape factor increased monotonously. During partial remelting, increasing reheating temperature can properly short the isothermal holding time to obtain fine structure. Moreover, increasing the numbers of CEC passes could produce finer semi-solid microstructure. The coarsening behavior of solid grains in the semi-solid state obeys Ostwald ripening and grain coalescence mechanisms. The coarsening rate constant, K, was 80 µm3·s−1 for samples partially remelted at 595 °C. After CEC plus partial remelting, the ideal and fine semi-solid state structure can be obtained, which was suitable for thixoforming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z.D. Zhao, Q. Chen, C.K. Hu, S.H. Huang and Y.Q. Wang, J. Alloys Compd. 485 (2009) 627.

    Article  CAS  Google Scholar 

  2. Y.J. Chen, H.J. Roven, Q.D. Wang, M.P. Liu and J.B. Lin, Mater. Sci. Forum. 584 (2008) 523.

    Article  Google Scholar 

  3. Q. Chen, D.Y. Shu, Z.D. Zhao, Z.X. Zhao, Y.B. Wang and B.G. Yuan, Mater. Des. 40 (2012) 488.

    Article  CAS  Google Scholar 

  4. Q. Chen, Z.W. Huang, Z.D. Zhao, C.K. Hu and D.Y. Shu, Comput. Mater. Sci. 67 (2013) 196.

    Article  CAS  Google Scholar 

  5. Z.D. Zhao, Q. Chen, H.Y. Chao, C.K. Hu and S.H. Huang, Mater. Des. 32 (2011) 575.

    Article  CAS  Google Scholar 

  6. X.L. Zhang, T.J. Li, H.T. Teng, S.S. Xie and J.Z. Jin, Mater. Sci. Eng. A 475 (2008) 194.

    Article  Google Scholar 

  7. Y.J. Chen, Q.D. Wang, H.J. Roven, M. Karlsen, Y.D. Yu, M.P. Liu and J. Hjelen, J. Alloys Compd. 462 (2008) 192.

    Article  CAS  Google Scholar 

  8. Z.D. Zhao, Q. Chen, Y.B. Wang and D.Y. Shu, Mater. Sci. Eng. A 515 (2009) 152.

    Article  Google Scholar 

  9. J.G. Wang, H.Q. Lin, H.Y. Wang and Q.C. Jiang, J. Alloys Compd. 466 (2008) 98.

    Article  CAS  Google Scholar 

  10. Z.D. Zhao, Q. Chen, C.K. Hu and D.Y. Shu, Mater. Des. 30 (2009) 4557.

    Article  CAS  Google Scholar 

  11. Y.S. Cheng, Q. Chen, Z.Q. Huang and S.H. Huang, Trans. Nonferrous Met. Soc. China 20 (2010) 739.

    Article  Google Scholar 

  12. Y. Birol, J. Alloys Compd. 461 (2008) 132.

    Article  CAS  Google Scholar 

  13. Q. Chen, S.J. Luo and Z.D. Zhao, J. Alloys Compd. 477 (2009) 726.

    Article  CAS  Google Scholar 

  14. Q. Chen, J. Lin, D.Y. Shu, C.K Hu, Z.D. Zhao, F. Kang, S.H. Huang and B.G. Yuan, Mater. Sci. Eng. A 554 (2012) 129.

    Article  CAS  Google Scholar 

  15. Z.D. Zhao, Y.S. Cheng, Q. Chen, Y.B. Wang and D.Y. Shu, Trans. Nonferrous Met. Soc. China 20 (2010) 178.

    Article  CAS  Google Scholar 

  16. E. Tzimas and A. Zavaliangos, Mater. Sci. Eng. A 289 (2000) 228.

    Article  Google Scholar 

  17. Z.D. Zhao, Q. Chen, F. Kang and D.Y. Shu, J. Alloys Compd. 482 (2009) 455.

    Article  CAS  Google Scholar 

  18. Z.D. Zhao, Q. Chen, Z.J. Tang, Y.B. Wang and H.Q. Ning, J. Mater. Sci. 45 (2010) 3419.

    Article  CAS  Google Scholar 

  19. Z.D. Zhao, Q. Chen, Y.B. Wang and D.Y. Shu, Trans. Nonferrous Met. Soc. China 19 (2009) 535.

    Article  CAS  Google Scholar 

  20. Q. Chen, Z.X. Zhao, D.Y. Shu and Z.D. Zhao, Mater. Sci. Eng. A 528 (2011) 3930.

    Article  Google Scholar 

  21. Q.Q. Zhang, Z.Y. Cao, Y.F. Zhang, G.H. Su and Y.B. Liu, J. Mater. Proc. Technol. 184 (2007) 195.

    Article  CAS  Google Scholar 

  22. F. Czerwinski, Scr. Mater. 48 (2003) 327.

    Article  CAS  Google Scholar 

  23. F. Czerwinski, Acta Mater. 50 (2002) 3265.

    CAS  Google Scholar 

  24. S.J. Luo, Q. Chen, and Z.D. Zhao, Mater. Sci. Eng. A 501 (2009) 146.

    Article  Google Scholar 

  25. J.G. Wang, P. Lu, H.Y. Wang, J.F. Liu and Q.C. Jiang, J. Alloys Compd. 395 (2005) 108.

    Article  CAS  Google Scholar 

  26. Q. Chen, Z.D. Zhao, Z.X. Zhao, C.K. Hu and D.Y. Shu, J. Alloys Compd. 509 (2011) 7303.

    Article  CAS  Google Scholar 

  27. Q. Chen, D.Y. Shu, C.K. Hu, Z.D. Zhao and B.G. Yuan, Mater. Sci. Eng. A 541 (2012) 98.

    Article  CAS  Google Scholar 

  28. Y.J. Chen, Q.D. Wang, J.B Lin, L.J. Zhang and C.Q. Zhai, J. Mater. Sci. 42 (2007) 7601.

    Article  CAS  Google Scholar 

  29. A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski and A. Yanagida, CIRP Annals-Manuf. Technol. 57 (2008) 716.

    Article  Google Scholar 

  30. S.J. Luo, Q. Chen and Z.D. Zhao, J. Alloys Compd. 477 (2009) 602.

    Article  CAS  Google Scholar 

  31. Z.D. Zhao, Q. Chen, H.Y. Chao and S.H. Huang, Mater. Des. 31 (2010) 1906.

    Article  CAS  Google Scholar 

  32. L. Zhang, Y.B. Liu, Z.Y. Cao, Y.F. Zhang and Q.Q. Zhang, J. Mater. Process. Technol. 209 (2009) 792.

    Article  CAS  Google Scholar 

  33. Z.D. Zhao, Q. Chen, Y.B. Wang and D.Y. Shu, Mater. Sci. Eng. A 506 (2009) 8.

    Article  Google Scholar 

  34. X.H. Du and E.L. Zhang, Mater. Lett. 61 (2007) 2333.

    Article  CAS  Google Scholar 

  35. Z.D. Zhao, Q. Chen, Z.J. Tang and C.K. Hu, J. Alloys Compd. 497 (2010) 402.

    Article  CAS  Google Scholar 

  36. Y.J. Chen, Q.D. Wang, J.J. Peng, C.Q Zhai and W.J. Ding, J. Mater. Process. Technol. 182 (2007) 281.

    Article  CAS  Google Scholar 

  37. Y.J. Chen, Q.D. Wang, H.J. Roven, M.P. Liu, M. Karlsen, Y.D. Yu and J. Hjelen, Scr. Mater. 58 (2008) 311.

    Article  CAS  Google Scholar 

  38. L.J. Zhang, Q.D. Wang, Y.J Chen, J.B Lin, Mater. Sci. Forum. 546 (2007) 253.

    Article  Google Scholar 

  39. Q.D. Wang, Y.J. Chen, M.P. Liu, J.B. Lin and H.J. Roven, Mater. Sci. Eng. A 527 (2010) 2265.

    Article  Google Scholar 

  40. H.V. Atkinson and D. Liu, Mater. Sci. Eng. A 496 (2008) 439.

    Article  Google Scholar 

  41. F.Y. Zhang, PhD Dissertation, University of Nanchang, Nanchang, 2008. (in Chinese)

  42. Q. Chen, B.G. Yuan, G.Z. Zhao, D.Y. Shu, C.K. Hu, Z.D. Zhao and Z.X. Zhao, Mater. Sci. Eng. A 537 (2012) 25.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changpeng Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C., Mei, H., Li, R. et al. Microstructure evolution and grain coarsening behaviour during partial remelting of cyclic extrusion compression formed AZ61 magnesium alloy. ACTA METALL SIN 26, 149–156 (2013). https://doi.org/10.1007/s40195-012-0169-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-012-0169-2

Key Words

Navigation