Skip to main content

Advertisement

Log in

Connected, digitalized welding production—Industrie 4.0 in gas metal arc welding

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

The digitalization and thus the presence of far-reaching, networked information technology have led to fundamental and accelerated changes in society and technology in recent decades. Industrial production technology cannot be viewed isolated in this context and is thus confronted with new expectations on the one hand but also with great potential on the other. Initiatives such as “Industrie 4.0” from Germany, “Made in China 2015” from China, or “Industrial Internet Consortium” from the USA address the need for deliberate promotion of digitalized production systems but are often still at the conceptual stage. This paper describes the basic framework and core elements of Industrie 4.0 and places them in the context of gas metal arc welding (GMAW). Based on this, concepts for autonomous welding production and for utilizing networked information sources for the improvement of product quality are described. The described concepts show the potential added value of networked production systems for gas metal arc welding in terms of process and product optimization and the necessary methodological requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Henning Kagerman et al. (2016) Industrie 4.0 in a Global Context: Strategies for Cooperating with International Partners (acatech study); Munich

  2. Jodlbauer H (2018) Digitale Transformation der Wertschöpfung; Kohlhammer

  3. Reinhart G (2017) Handbuch Industrie 4.0; Carl Hanser Verlag

  4. Roth A (2016) Einführung und Umsetzung von Industrie 4.0 – Grundlagen, Vorgehensmodell und Use Cases aus der Praxis; Springer Gabler

  5. Schircks AD (2017) und andere; Strategie für Industrie 4.0; Springer Gabler

  6. Vogel-Heuser B (2017) und andere; Handbuch Industrie 4.0 Band 1; Springer Vieweg

  7. Middeldorf K (2018) Schweißtechnische Fertigung – Ready for „Industrie 4.0“; Der Praktiker 1-2

  8. Universität St. Gallen (2016) Forschungsprogramm digital business and transformation; https://www.iwi.unisg.ch/forschung/forschungsprogramm/

  9. Reinhart G Vorwort; in: [2] a.a.O

  10. Schircks AD Strategie 4.0 in der Organisation 4.0; in: [4] a.a.O

  11. Schleidt D (2014) Das Ende eines Kunstwortes; Frankfurter Allgemeine Zeitung Verlagsspezial Industrie 4.0; 18. November

  12. Löffler K, Hengesbach S Photonik – ein integraler Bestandteil der Industrie 4.0; Lasertagung 2016; DVS – Bericht 328

  13. FIR RWTH Aachen (2015) Smart operations – Whitepaper

  14. Reisgen U, Middeldorf K, Sharma R, Willms K, Buchholz G, Mann, S (2018) Vernetzte, digitalisierte, schweißtechnische Fertigung – Industrie 4.0 beim Metall-Schutzgasschweißen, DVS Congress, Friedrichshafen, Germany

  15. DIN / DKE (2015) Deutsche Normungs-Roadmap Industrie 4.0

  16. Pfeiffer S Industrie 4.0 und die Digitalisierung der Produktion – Hype oder Megatrend; Aus Politik und Zeitgeschichte 31-32 / 2015

  17. Bauer W und andere; Weiterbildung und Kompetenzentwicklung für die Industrie 4.0; in: [5] a.a.O

  18. Fecht N, Thoss A Quo vadis, Industrie 4.0/2016; www.euroblech.com

  19. Kleinemeier M Von der Unternehmenspyramide zu Unternehmenssteuerungs-Netzwerken; in: Vogel-Heuser, B. und andere, a.a.O

  20. Nyhuis P und andere; Veränderung in der Produktionsplanung und –steuerung; in: [2] a.a.O

  21. Gorecky D u. a.; Wandelbare modulare Automatisierungssysteme; in: [2] a.a.O

  22. WGP – Wissenschaftliche Gesellschaft für Produktionstechnik (2016) WGP-Standpunkt Industrie 4.0

  23. Schuh G und andere; Geschäftsmodell-Innovationen; in: [2] a.a.O

  24. Pfeiffer S und andere; Industrie 4.0 – Qualifizierung 2025; VDMA 2016

  25. Reinhart G und andere; Der Mensch in der Produktion von Morgen; in: 72/ a.a.O

  26. Gausemeier J, Wiesecke J (2017) Mit Industrie 4.0 zum Unternehmenserfolg – Integrative Planung von Geschäftsmodellen und Wertschöpfungssystemen. Heinz-Nixdorf Institut, Universität Paderborn

  27. Reisgen U, Purrio M, Buchholz G, Willms K (2014) Machine vision system for online weld pool observation of gas metal arc welding processes. Welding in the World 58(5):707–711

    Article  Google Scholar 

  28. Reisgen U, Lozano Ph, Mann S, Buchholz G, Willms K (2015) Process control of gas metal arc welding processes by optical weld pool observation with combined quality models. In: 11th IEEE International Conference on Automation Science and Engineering, CASE, Gothenburg, Sweden, 25. - 26, pp 407–410

  29. Reisgen U, Mann S, Lozano P, Buchholz G, Willms K, Jaeschke B (2017) Model-based description of arc length as a synergetic system parameter in pulsed GMAW. Welding in the World 61(6):1169–1179

    Article  Google Scholar 

  30. Reisgen U, Beckers M, Willms K, Buchholz G (2010) Einsatz der Ersatzmodellierung bei der Automatisierung von MSG-Schweißverfahren. DVS-Berichte Band 267:346–351

    Google Scholar 

  31. Reisgen U, Beckers M, Willms K, Buchholz G (2010) Einsatz und Vorgehensweise bei der Ersatzmodellierung beim Impulslichtbogenschweißverfahren. DVS-Berichte Band 268:79–84

    Google Scholar 

  32. Reisgen U, Willms K, Beckers M, Buchholz G, Voigt H-M, Harder W (2011) Modellbasierte Bausteine für die Automatisierung beim MSG-Schweißen. Schweißen und Schneiden 63(6):312–318

    Google Scholar 

  33. Reisgen U, Purrio M, Buchholz G, Willms K (2013) Possibilities of a control of the droplet detachment in pulsed gas metal arc welding. Welding in the World 57(5):701–706

    Article  Google Scholar 

  34. Reisgen U, Beckers M, Willms K, Buchholz G, Lose J, Perge J, Schmitt R (2011) Model based self optimisation for production processes. In: 4th International Conference on Changeable, Agile, Reconfigurable and Virtual Production (CARV2011), Montreal, Canada

  35. Reisgen U, Beckers M, Willms, K, Buchholz G Combining simulation and surrogate modelling for self-optimisation strategies in gas metal arc welding processes. In: Self-X in engineering, KI 2010, Karlsruhe

  36. Reisgen U, Beckers M, Buchholz G, Willms K (2012) Progress towards model based optimisation of gas metal arc welding processes. Welding in the World 56(9/10):35–40

    Article  Google Scholar 

Download references

Funding

The authors would like to thank the German Research Foundation DFG for the support of the research work that has been carried out within the framework of the Cluster of Excellence “Internet of Production” (project ID 390621612) and the participating partners from the industry for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mann.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Recommended for publication by Commission XII - Arc Welding Processes and Production Systems

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reisgen, U., Mann, S., Middeldorf, K. et al. Connected, digitalized welding production—Industrie 4.0 in gas metal arc welding. Weld World 63, 1121–1131 (2019). https://doi.org/10.1007/s40194-019-00723-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-019-00723-2

Keywords

Navigation