Skip to main content

Advertisement

Log in

Update on the Management of Pancreatic Cancer: Determinants for Surgery and Widening the Therapeutic Window of Surgical Resection

  • Surgical Oncology (A. Tufaro, Section Editor)
  • Published:
Current Surgery Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Pancreatic cancer continues to be a disease associated with poor long-term survival. Surgical resection is associated with high morbidity and delays in systemic therapy.

Recent Findings

Recognition of pancreatic cancer as a systemic disease has led to the increased utilization of multimodality therapy and shifting paradigms in the sequence of care. Identification of biomarkers and improved understanding of tumor biology have allowed for improved patient stratification and an individualized approach to treatment planning. Additionally, introduction of minimally invasive approaches to pancreatic resection have improved rates of significant post-operative morbidity.

Summary

Cumulatively, these new developments have altered the approach to surgical resection and aid in improving patient survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5–29.

    Article  PubMed  Google Scholar 

  2. McDowell BD, et al. Pancreatectomy predicts improved survival for pancreatic adenocarcinoma: results of an instrumental variable analysis. Ann Surg. 2015;261(4):740–5.

    Article  PubMed  PubMed Central  Google Scholar 

  3. •• Oettle H, et al. Adjuvant chemotherapy with gemcitabine and long-term outcomes among patients with resected pancreatic cancer: the CONKO-001 randomized trial. JAMA 2013;310(14):1473–81. Long-term follow up of a randomized trial demonstrating statistically significant improvement in 5 and 10 year survival after treatment with adjuvant gemcitabine for 6 months compared to observation alone.

  4. Winter JM, et al. 1423 pancreaticoduodenectomies for pancreatic cancer: a single-institution experience. J Gastrointest Surg. 2006;10(9):1199–210; discussion 1210–1.

  5. Kaneko OF, et al. Performance of multidetector computed tomographic angiography in determining surgical resectability of pancreatic head adenocarcinoma. J Comput Assist Tomogr. 2010;34(5):732–8.

    Article  PubMed  Google Scholar 

  6. Tempero MA, et al. Pancreatic adenocarcinoma, version 2.2014: featured updates to the NCCN guidelines. J Natl Compr Cancer Netw. 2014;12(8):1083–93.

    CAS  Google Scholar 

  7. •• Bockhorn M, et al. Borderline resectable pancreatic cancer: a consensus statement by the International Study Group of Pancreatic Surgery (ISGPS). Surgery 2014;155(6):977–88. Consensus statement for the management of borderline resectable pancreatic cancer.

  8. Tol JA, et al. Non-radical resection versus bypass procedure for pancreatic cancer—a consecutive series and systematic review. Eur J Surg Oncol. 2015;41(2):220–7.

    Article  CAS  PubMed  Google Scholar 

  9. Bao P, et al. Validation of a prediction rule to maximize curative (R0) resection of early-stage pancreatic adenocarcinoma. HPB (Oxf). 2009;11(7):606–11.

    Article  Google Scholar 

  10. • Sugiura T, et al. Serum CA19-9 is a significant predictor among preoperative parameters for early recurrence after resection of pancreatic adenocarcinoma. J Gastrointest Surg. 2012;16(5):977–85. Analysis correlating elevated CA 19-9 levels with significantly increased rates of early recurrence and decreased overall survival.

  11. Dong Q, et al. Elevated serum CA19-9 level is a promising predictor for poor prognosis in patients with resectable pancreatic ductal adenocarcinoma: a pilot study. World J Surg Oncol. 2014;12:171. doi:10.1186/1477-7819-12-171.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Distler M, et al. Preoperative CEA and CA 19-9 are prognostic markers for survival after curative resection for ductal adenocarcinoma of the pancreas—a retrospective tumor marker prognostic study. Int J Surg. 2013;11(10):1067–72.

    Article  PubMed  Google Scholar 

  13. Ferrone CR, et al. Perioperative CA19-9 levels can predict stage and survival in patients with resectable pancreatic adenocarcinoma. J Clin Oncol. 2006;24(18):2897–902.

    Article  CAS  PubMed  Google Scholar 

  14. Kim YC, et al. Can preoperative CA19-9 and CEA levels predict the resectability of patients with pancreatic adenocarcinoma? J Gastroenterol Hepatol. 2009;24(12):1869–75.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang S, et al. Clinical value of serum CA19-9 levels in evaluating resectability of pancreatic carcinoma. World J Gastroenterol. 2008;14(23):3750–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. He Z, et al. CA19-9 as a predictor of resectability in patients with borderline resectable pancreatic cancer. Hepatogastroenterology. 2013;60(124):900–3.

    CAS  PubMed  Google Scholar 

  17. Humphris JL, et al. The prognostic and predictive value of serum CA19.9 in pancreatic cancer. Ann Oncol. 2012;23(7):1713–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brown EG, Canter RJ, Bold RJ. Preoperative CA 19-9 kinetics as a prognostic variable in radiographically resectable pancreatic adenocarcinoma. J Surg Oncol. 2015;111(3):293–8.

    Article  CAS  PubMed  Google Scholar 

  19. •• Oshima M, et al. Immunohistochemically detected expression of 3 major genes (CDKN2A/p16, TP53, and SMAD4/DPC4) strongly predicts survival in patients with resectable pancreatic cancer. Ann Surg. 2013;258(2):336–46. Retrospective study clarifying the clinical implications of several genetic alterations in pancreatic cancer.

  20. Wood LD, Hruban RH. Pathology and molecular genetics of pancreatic neoplasms. Cancer J. 2012;18(6):492–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xiang JF, et al. Mutant p53 determines pancreatic cancer poor prognosis to pancreatectomy through upregulation of cavin-1 in patients with preoperative serum CA19-9>/=1,000 U/mL. Sci Rep. 2016;6:19222. doi:10.1038/srep19222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tovar C, et al. MDM2 small-molecule antagonist RG7112 activates p53 signaling and regresses human tumors in preclinical cancer models. Cancer Res. 2013;73(8):2587–97.

    Article  CAS  PubMed  Google Scholar 

  23. • Blackford A, et al. SMAD4 gene mutations are associated with poor prognosis in pancreatic cancer. Clin Cancer Res. 2009;15(14):4674–9. Analysis which exemplified the finding that SMAD4 gene inactivation is associated with poorer prognosis in patients with surgically resected adenocarcinoma of the pancreas.

  24. Jiang H, et al. RhoT1 and Smad4 are correlated with lymph node metastasis and overall survival in pancreatic cancer. PLoS One. 2012;7(7):e42234. doi:10.1371/journal.pone.0042234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen YW, et al. SMAD4 loss triggers the phenotypic changes of pancreatic ductal adenocarcinoma cells. BMC Cancer. 2014;14:181. doi:10.1186/1471-2407-14-181.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Boone BA, et al. Loss of SMAD4 staining in pre-operative cell blocks is associated with distant metastases following pancreaticoduodenectomy with venous resection for pancreatic cancer. J Surg Oncol. 2014;110(2):171–5.

    Article  PubMed  Google Scholar 

  27. Valero V III, et al. Reliable detection of somatic mutations in fine needle aspirates of pancreatic cancer with next-generation sequencing: implications for surgical management. Ann Surg. 2016;263(1):153–61.

    Article  PubMed  Google Scholar 

  28. Chausovsky G, et al. Expression of cytokeratin 20 in the blood of patients with disseminated carcinoma of the pancreas, colon, stomach, and lung. Cancer. 1999;86(11):2398–405.

    Article  CAS  PubMed  Google Scholar 

  29. Nagrath S, et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature. 2007;450(7173):1235–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cauley CE, et al. Circulating epithelial cells in patients with pancreatic lesions: clinical and pathologic findings. J Am Coll Surg. 2015;221(3):699–707.

    Article  PubMed  Google Scholar 

  31. • Earl J, et al. Circulating tumor cells (CTC) and KRAS mutant circulating free DNA (cfDNA) detection in peripheral blood as biomarkers in patients diagnosed with exocrine pancreatic cancer. BMC Cancer 2015;15:797. doi:10.1186/s12885-015-1779-7. Pilot study of circulating tumor cells in patients with metastatic pancreatic cancer and their impact on survival.

  32. Kurihara T, et al. Detection of circulating tumor cells in patients with pancreatic cancer: a preliminary result. J Hepatobiliary Pancreat Surg. 2008;15(2):189–95.

    Article  PubMed  Google Scholar 

  33. Soeth E, et al. Detection of tumor cell dissemination in pancreatic ductal carcinoma patients by CK 20 RT-PCR indicates poor survival. J Cancer Res Clin Oncol. 2005;131(10):669–76.

    Article  PubMed  Google Scholar 

  34. Poruk KE, et al. Circulating tumor cell phenotype predicts recurrence and survival in pancreatic adenocarcinoma. Ann Surg. 2016;263(6):1039–41.

    Article  Google Scholar 

  35. Thiery JP, et al. Epithelial–mesenchymal transitions in development and disease. Cell. 2009;139(5):871–90.

    Article  CAS  PubMed  Google Scholar 

  36. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15(3):178–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tas F, et al. Performance status of patients is the major prognostic factor at all stages of pancreatic cancer. Int J Clin Oncol. 2013;18(5):839–46.

    Article  CAS  PubMed  Google Scholar 

  38. Fan KY, et al. Baseline hemoglobin-A1c impacts clinical outcomes in patients with pancreatic cancer. J Natl Compr Cancer Netw. 2014;12(1):50–7.

    CAS  Google Scholar 

  39. Sukharamwala P, et al. Advanced age is a risk factor for post-operative complications and mortality after a pancreaticoduodenectomy: a meta-analysis and systematic review. HPB (Oxf). 2012;14(10):649–57.

    Article  Google Scholar 

  40. Kow AW, et al. Is pancreaticoduodenectomy justified in elderly patients? Surgeon. 2012;10(3):128–36.

    Article  CAS  PubMed  Google Scholar 

  41. Melis M, et al. The safety of a pancreaticoduodenectomy in patients older than 80 years: risk vs. benefits. HPB (Oxf). 2012;14(9):583–8.

    Article  Google Scholar 

  42. Haeno H, et al. Computational modeling of pancreatic cancer reveals kinetics of metastasis suggesting optimum treatment strategies. Cell. 2012;148(1–2):362–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yachida S, et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature. 2010;467(7319):1114–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cameron JL, He J. Two thousand consecutive pancreaticoduodenectomies. J Am Coll Surg. 2015;220(4):530–6.

    Article  PubMed  Google Scholar 

  45. •• Tzeng CW, et al. Treatment sequencing for resectable pancreatic cancer: influence of early metastases and surgical complications on multimodality therapy completion and survival. J Gastrointest Surg. 2014;18(1):16–24; discussion 24–5. Single institution study demonstrating the effect of post-operative complications after pancreatic resection on the ability to deliver multimodality therapy.

  46. Wu W, et al. The impact of postoperative complications on the administration of adjuvant therapy following pancreaticoduodenectomy for adenocarcinoma. Ann Surg Oncol. 2014;21(9):2873–81.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Christians KK, et al. Survival of patients with resectable pancreatic cancer who received neoadjuvant therapy. Surgery. 2016;159(3):893–900.

    Article  PubMed  Google Scholar 

  48. Papalezova KT, et al. Does preoperative therapy optimize outcomes in patients with resectable pancreatic cancer? J Surg Oncol. 2012;106(1):111–8.

    Article  PubMed  Google Scholar 

  49. Ielpo B, et al. Preoperative treatment with gemcitabine plus nab-paclitaxel is a safe and effective chemotherapy for pancreatic adenocarcinoma. Eur J Surg Oncol. 2016. doi:10.1016/j.ejso.2016.01.006.

  50. Wong J, Solomon NL, Hsueh CT. Neoadjuvant treatment for resectable pancreatic adenocarcinoma. World J Clin Oncol. 2016;7(1):1–8.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Christians KK, et al. Neoadjuvant FOLFIRINOX for borderline resectable pancreas cancer: a new treatment paradigm? Oncologist. 2014;19(3):266–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. • Blazer M, et al. Neoadjuvant modified (m) FOLFIRINOX for locally advanced unresectable (LAPC) and borderline resectable (BRPC) adenocarcinoma of the pancreas. Ann Surg Oncol. 2015;22(4):1153–9. Retrospective analysis demonstrating neoadjuvant FOLFIRINOX as a safe and effective systemic therapeutic regimen, with a trend toward progression-free survival advantage.

  53. Ferrone CR, et al. Radiological and surgical implications of neoadjuvant treatment with FOLFIRINOX for locally advanced and borderline resectable pancreatic cancer. Ann Surg. 2015;261(1):12–7.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Katz MH, et al. Response of borderline resectable pancreatic cancer to neoadjuvant therapy is not reflected by radiographic indicators. Cancer. 2012;118(23):5749–56.

    Article  PubMed  Google Scholar 

  55. Tzeng CW, et al. Serum carbohydrate antigen 19-9 represents a marker of response to neoadjuvant therapy in patients with borderline resectable pancreatic cancer. HPB (Oxf). 2014;16(5):430–8.

    Article  Google Scholar 

  56. Boone BA, et al. Serum CA 19-9 response to neoadjuvant therapy is associated with outcome in pancreatic adenocarcinoma. Ann Surg Oncol. 2014;21(13):4351–8.

    Article  PubMed  Google Scholar 

  57. Ducreux M, et al. Cancer of the pancreas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26(Suppl 5):v56–68.

    Article  PubMed  Google Scholar 

  58. Neoptolemos JP, et al. A randomized trial of chemoradiotherapy and chemotherapy after resection of pancreatic cancer. N Engl J Med. 2004;350(12):1200–10.

    Article  CAS  PubMed  Google Scholar 

  59. Neoptolemos JP, et al. Effect of adjuvant chemotherapy with fluorouracil plus folinic acid or gemcitabine vs observation on survival in patients with resected periampullary adenocarcinoma: the ESPAC-3 periampullary cancer randomized trial. JAMA. 2012;308(2):147–56.

    Article  CAS  PubMed  Google Scholar 

  60. Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg. 2004;240(2):205–13.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Merkow RP, et al. Postoperative complications reduce adjuvant chemotherapy use in resectable pancreatic cancer. Ann Surg. 2014;260(2):372–7.

    Article  PubMed  Google Scholar 

  62. •• Zureikat AH, et al. 250 Robotic pancreatic resections: safety and feasibility. Ann Surg. 2013;258(4):554–9; discussion 559–62. One of the largest series to date on pancreatic resections, demonstrating safety of the approach.

  63. Denbo JW, et al. Toward defining grade C pancreatic fistula following pancreaticoduodenectomy: incidence, risk factors, management and outcome. HPB (Oxf). 2012;14(9):589–93.

    Article  Google Scholar 

  64. He J, et al. 2564 Resected periampullary adenocarcinomas at a single institution: trends over three decades. HPB (Oxf). 2014;16(1):83–90.

    Article  Google Scholar 

  65. Fernandez-del Castillo C, et al. Evolution of the Whipple procedure at the Massachusetts General Hospital. Surgery. 2012;152(3 Suppl 1):S56–63.

    Article  PubMed  Google Scholar 

  66. Dong X, et al. Analysis of pancreatic fistula according to the International Study Group on Pancreatic Fistula classification scheme for 294 patients who underwent pancreaticoduodenectomy in a single center. Pancreas. 2011;40(2):222–8.

    Article  PubMed  Google Scholar 

  67. Addeo P, et al. Pancreatic fistula after a pancreaticoduodenectomy for ductal adenocarcinoma and its association with morbidity: a multicentre study of the French Surgical Association. HPB (Oxf). 2014;16(1):46–55.

    Article  Google Scholar 

  68. Croome KP, et al. Total laparoscopic pancreaticoduodenectomy for pancreatic ductal adenocarcinoma: oncologic advantages over open approaches? Ann Surg. 2014;260(4):633–8; discussion 638–40.

  69. Sulpice L, et al. Laparoscopic distal pancreatectomy for pancreatic ductal adenocarcinoma: time for a randomized controlled trial? Results of an all-inclusive national observational study. Ann Surg. 2015;262(5):868–73; discussion 873–4.

  70. Stauffer JA, et al. Laparoscopic versus open distal pancreatectomy for pancreatic adenocarcinoma. World J Surg. 2016;40(6):1477–84.

    Article  PubMed  Google Scholar 

  71. Adam MA, et al. Minimally invasive versus open pancreaticoduodenectomy for cancer: practice patterns and short-term outcomes among 7061 patients. Ann Surg. 2015;262(2):372–7.

    Article  PubMed  Google Scholar 

  72. Nussbaum DP, et al. Minimally invasive pancreaticoduodenectomy does not improve use or time to initiation of adjuvant chemotherapy for patients with pancreatic adenocarcinoma. Ann Surg Oncol. 2016;23(3):1026–33.

    Article  PubMed  Google Scholar 

  73. Sharpe SM, et al. Early national experience with laparoscopic pancreaticoduodenectomy for ductal adenocarcinoma: a comparison of laparoscopic pancreaticoduodenectomy and open pancreaticoduodenectomy from the national cancer database. J Am Coll Surg. 2015;221(1):175–84.

    Article  PubMed  Google Scholar 

  74. • Boone BA, et al. Assessment of quality outcomes for robotic pancreaticoduodenectomy: identification of the learning curve. JAMA Surg. 2015;150(5):416–22. Largest series to date of robotic pancreaticoduodenectomy, establishing a learning curve for robotic pancreatic resections.

  75. Oxenberg J, et al. Multidisciplinary cancer conferences for gastrointestinal malignancies result in measureable treatment changes: a prospective study of 149 consecutive patients. Ann Surg Oncol. 2015;22(5):1533–9.

    Article  PubMed  Google Scholar 

  76. Pawlik TM, et al. Evaluating the impact of a single-day multidisciplinary clinic on the management of pancreatic cancer. Ann Surg Oncol. 2008;15(8):2081–8.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Katz MH, et al. Long-term survival after multidisciplinary management of resected pancreatic adenocarcinoma. Ann Surg Oncol. 2009;16(4):836–47.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Tzeng CW, et al. Yield of clinical and radiographic surveillance in patients with resected pancreatic adenocarcinoma following multimodal therapy. HPB (Oxf). 2012;14(6):365–72.

    Article  Google Scholar 

  79. Bilimoria KY, et al. Multimodality therapy for pancreatic cancer in the U.S.: utilization, outcomes, and the effect of hospital volume. Cancer. 2007;110(6):1227–34.

    Article  PubMed  Google Scholar 

  80. Labori KJ, et al. Impact of early disease progression and surgical complications on adjuvant chemotherapy completion rates and survival in patients undergoing the surgery first approach for resectable pancreatic ductal adenocarcinoma—a population-based cohort study. Acta Oncol. 2016;55(3):265–77.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert J. Zeh.

Ethics declarations

Conflict of Interest

Drs. Maggi, Hogg, Zureikat, and Zeh declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical collection on Surgical Oncology.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maggi, J.C., Hogg, M.E., Zureikat, A.H. et al. Update on the Management of Pancreatic Cancer: Determinants for Surgery and Widening the Therapeutic Window of Surgical Resection. Curr Surg Rep 4, 26 (2016). https://doi.org/10.1007/s40137-016-0146-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40137-016-0146-1

Keywords

Navigation