Skip to main content
Log in

Electrical characteristics of a discharge in saltwater

  • Original Paper - Fluids, Plasma and Phenomenology
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Experiments are conducted to reveal the electrical characteristics of a pulsed discharge in saltwater. To check the influence of the electrode material on discharge, we used stainless steel, red copper, and W–Cu alloy (the content of tungsten is 80%) in our experiment. As a result, four different types of discharges are observed: a typical spark discharge, a typical corona discharge, a corona discharge with a bulge, and a mixed spark discharge. In the spark discharge mode, a RLC oscillating circuit is used to describe the current after the breakdown of the electrode gap. Previous studies were mainly done using freshwater; thus, the current in the pre-breakdown period was approximately 0. However, saltwater is full of ions and is highly conductive, which brings about the appearance of a conductive current in the pre-breakdown stage. When the conductive current is considered, we obtain the analytical expression for the current in saltwater by solving the second-order ordinary coefficient differential equation with current as a variable. In combination with the short-circuit method, the constant resistance of the plasma channel is finally calculated. Actually, the channel resistance is not always the same after the breakdown. Based on the actual resistance in the first half-cycle after the breakdown, we propose a time-varying channel resistance model. By data fitting, we determined the coefficients in the time-varying channel resistance model; we also discuss the relationship between the coefficients. The results show that the fitting curve is in good agreement with the measured one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L. Yutkin, Electrohydraulic Effect (Science Press, Beijing, 1962)

    Google Scholar 

  2. T. Miichi, N. Hayashi, S. Ihara, S. Satoh, C. Yamabe, Ozone Sci. Eng. 24, 471 (2002). https://doi.org/10.1080/01919510208901636

    Article  Google Scholar 

  3. B.R. Locke, M. Sato, P. Sunka, M.R. Hoffmann, J.S. Chang, Ind. Eng. Chem. Res. 45, 882 (2006). https://doi.org/10.1021/IE050981U

    Article  Google Scholar 

  4. G. Cannelli, E. D’ottavi, S. Santoboni, Rev. Sci. Instrum. 58, 1254 (1987). https://doi.org/10.1063/1.1139449

    Article  ADS  Google Scholar 

  5. L.H. Fry, P.L. Adair, R.W. Williams, in Digest of Technical Papers. 12th IEEE International Pulsed Power Conference. (Cat. No.99CH36358), vol. 2 (IEEE, 1999), pp. 781–784. https://doi.org/10.1109/PPC.1999.823630

  6. P. Adair, L.H. Fry, R. Williams, in Digest of Technical Papers. 12th IEEE International Pulsed Power Conference. (Cat. No.99CH36358), vol. 2 (IEEE, 1999), pp. 769–772. https://doi.org/10.1109/PPC.1999.823627

  7. Y. Sun, I.V. Timoshkin, M.J. Given, M.P. Wilson, T. Wang, S.J. Macgregor, N. Bonifaci, IEEE Tran. Dielectr. Electr. Insul. 25, 1915 (2018). https://doi.org/10.1109/TDEI.2018.007293

    Article  Google Scholar 

  8. E.A. Martin, J. Appl. Phys. 31, 255 (1960). https://doi.org/10.1063/1.1735555

    Article  ADS  Google Scholar 

  9. R.M. Roberts, J.A. Cook, R.L. Rogers, A.M. Gleeson, T.A. Griffy, J. Acoust. Soc. Am. 99, 3465 (1996). https://doi.org/10.1121/1.414993

    Article  ADS  Google Scholar 

  10. O. Higa, R. Matsubara, K. Higa, Y. Miyafuji, T. Gushi, Y. Omine, K. Naha, K. Shimojima, H. Fukuoka, H. Maehara, S. Tanaka, T. Matsui, S. Itoh, Int. J. Multiphys. 6, 89 (2012). https://doi.org/10.1260/1750-9548.6.2.89

    Article  Google Scholar 

  11. Y. Liu, Z. Li, X. Li, G. Zhou, H. Li, Q. Zhang, F. Lin, IEEE Trans. Plasma Sci. 45, 3231 (2017). https://doi.org/10.1109/TPS.2017.2651105

    Article  ADS  Google Scholar 

  12. V.T. Gurovich, A. Grinenko, Y.E. Krasik, J. Felsteiner, Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 69, 036402 (2004). https://doi.org/10.1103/PhysRevE.69.036402

    Article  ADS  Google Scholar 

  13. S.W. Liu, Y. Liu, Y.J. Ren, F.C. Lin, Y. Liu, Y.K. Shen, Phys. Plasmas 26, 023522 (2019). https://doi.org/10.1063/1.5064847

    Article  ADS  Google Scholar 

  14. P. Zhao, S. Roy, J. Appl. Phys. 115, 173301 (2014). https://doi.org/10.1063/1.4874184

    Article  ADS  Google Scholar 

  15. A.E. Vlastos, J. Appl. Phys. 43, 1987 (1972). https://doi.org/10.1063/1.1661429

    Article  ADS  Google Scholar 

  16. I.L. Marinov, O. Guaitella, A. Rousseau, S. Starikovskaia, J. Phys. D Appl. Phys. 46, 464013 (2013). https://doi.org/10.1088/0022-3727/46/46/464013

    Article  ADS  Google Scholar 

  17. D.B. Fenneman, R.J. Gripshover, IEEE Trans. Plasma Sci. 8, 209 (1980). https://doi.org/10.1109/TPS.1980.4317305

    Article  ADS  Google Scholar 

  18. M. Zahn, S.H. Voldman, T. Takada, D.B. Fenneman, J. Appl. Phys. 54, 315 (1983). https://doi.org/10.1063/1.331703

    Article  ADS  Google Scholar 

  19. M. Zahn, Y. Ohki, J. Gottwald, K. Rhoads, M.J. LaGasse, in 1984 IEEE International Conference on Eletrical Insulation (IEEE, 1984), pp. 304–310. https://doi.org/10.1109/EIC.1984.7465204

  20. Y. Liu, Z.Y. Li, X.D. Li, S.W. Liu, G.Y. Zhou, F.C. Lin, Phys. Plasmas 24, 043510 (2017). https://doi.org/10.1063/1.4980848

    Article  ADS  Google Scholar 

  21. S. Lee, Efficient generation of strong shock waves in underwater pulsed spark discharge. Ph.D. thesis, Seoul National University (2015)

  22. M.J. Given, I.V. Timoshkin, M.P. Wilson, S.J. Macgregor, in 2009 IEEE Pulsed Power Conference (IEEE, 2009), pp. 965–970. https://doi.org/10.1109/PPC.2009.5386141

  23. S.W. Liu, Y. Liu, Y.J. Ren, F.C. Lin, Y. Liu, Phys. Plasmas 26, 093509 (2019). https://doi.org/10.1063/1.5092362

    Article  ADS  Google Scholar 

  24. I.V. Timoshkin, R.A. Fouracre, M.J. Given, S.J. Macgregor, J. Phys. D Appl. Phys. 39, 4808 (2006). https://doi.org/10.1088/0022-3727/39/22/011

    Article  ADS  Google Scholar 

  25. V. Stelmashuk, P. Hoffer, K. Kolacek, J. Straus, IEEE Trans. Plasma Sci. 48, 491 (2020). https://doi.org/10.1109/TPS.2019.2963536

    Article  ADS  Google Scholar 

  26. O. Higa, T. Matsui, R. Matsubara, K. Higa, S. Itoh, Mater. Sci. Forum 767, 199 (2013). https://doi.org/10.4028/www.scientific.net/MSF.767.199

    Article  Google Scholar 

  27. Y. Sun, I.V. Timoshkin, M.J. Given, M.P. Wilson, T. Wang, S.J. Macgregor, N. Bonifaci, IEEE Trans. Plasma Sci. 44, 2156 (2016). https://doi.org/10.1109/TPS.2016.2583066

    Article  ADS  Google Scholar 

Download references

Acknowledgements

When my daughter was one year and two months old, I left home to pursue a doctorate. From then on, I have seldomly been able to go home for various reasons, which has led to my inability to take care of my wife and daughter. I owe a debt of gratitude to my beloved wife Yan Wang and my lovely daughter Zitong Han. It is your love and support that cheers me up and keeps me going.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Han.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Z., Zhang, X., Yan, B. et al. Electrical characteristics of a discharge in saltwater. J. Korean Phys. Soc. 80, 299–306 (2022). https://doi.org/10.1007/s40042-021-00366-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00366-x

Keywords

Navigation