Skip to main content
Log in

Analysis on the FLYCHK opacity of X-pinch wire materials

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The plasma opacities of the widely used X-pinch target materials (Cu, Mo, W) are calculated over a wide temperature and density range (T = 10–3–102 keV, ρ = 1016–1024 cm−3) by using the collisional radiative code FLYCHK. Including the scattering effect, the FLYCHK opacity of the mid-Z element copper is in good agreement with the Los Alamos opacity code ATOMIC in the broad Tρ range corresponding to typical X-pinch plasma conditions. In a strongly coupled region, a few corrections, such as the degeneracy effect for the free–free opacity, may be required to improve accuracies. The absence of a Δn = 0 transition and the simple scattering opacity formula in FLYCHK also cause the characteristics of the FLYCHK opacity data. The plasma opacities of the high-Z elements molybdenum and tungsten are also calculated. These results can be used as basic inputs for various radiative hydrodynamic simulations not only for X-pinch plasmas but for different types of high-energy–density plasma research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.A. Pikuz, T.A. Shelkovenko, D.A. Hammer, Plasma Phys. Rep. 41(4), 291 (2015). https://doi.org/10.1134/s1063780x15040054

    Article  ADS  Google Scholar 

  2. T.A. Shelkovenko, S.A. Pikuz, A.R. Mingaleev, D.A. Hammer, Rev. Sci. Instrum. 70(1), 667 (1999). https://doi.org/10.1063/1.1149361

    Article  ADS  Google Scholar 

  3. D.H. Kalantar, D.A. Hammer, Rev. Sci. Instrum. 66(1), 779 (1995). https://doi.org/10.1063/1.1146219

    Article  ADS  Google Scholar 

  4. S.V. Lebedev, F.N. Beg, S.N. Bland, J.P. Chittenden, A.E. Dangor, M.G. Haines, M. Zakaullah, S.A. Pikuz, T.A. Shelkovenko, D.A. Hammer, Rev. Sci. Instrum. 72(1), 671 (2001). https://doi.org/10.1063/1.1315647

    Article  ADS  Google Scholar 

  5. S.A. Pikuz, T.A. Shelkovenko, D.A. Hammer, Plasma Phys. Rep. 41(6), 445 (2015). https://doi.org/10.1134/s1063780x15060045

    Article  ADS  Google Scholar 

  6. T.A. Shelkovenko, S.A. Pikuz, I.N. Tilikin, M.D. Mitchell, S.N. Bland, D.A. Hammer, Matter Radiat. Extremes 3(6), 267 (2018). https://doi.org/10.1016/j.mre.2018.09.001

    Article  Google Scholar 

  7. R.W. Lee, Fusion Technol. 30(3P2A), 520 (1996). https://doi.org/10.13182/FST96-A11962992

    Article  Google Scholar 

  8. J.J. MacFarlane, J.E. Bailey, G.A. Chandler, C. Deeney, M.R. Douglas, D. Jobe, P. Lake, T.J. Nash, D.S. Nielsen, R.B. Spielman et al., Phys. Rev. E 66(4), 046416 (2002). https://doi.org/10.1103/PhysRevE.66.046416

    Article  ADS  Google Scholar 

  9. G.V. Ivanenkov, W. Stepniewski, S.A. Pikuz, S.Y. Gus’kov, AIP Conf. Proc. 808(1), 133 (2006). https://doi.org/10.1063/1.2159337

    Article  ADS  Google Scholar 

  10. D.B. Sinars, R.D. McBride, S.A. Pikuz, T.A. Shelkovenko, D.F. Wenger, M.E. Cuneo, E.P. Yu, J.P. Chittenden, E.C. Harding, S.B. Hansen et al., Phys. Rev. Lett. 109(15), 155002 (2012). https://doi.org/10.1103/PhysRevLett.109.155002

    Article  ADS  Google Scholar 

  11. J.P. Chittenden, S.V. Lebedev, C.A. Jennings, S.N. Bland, A. Ciardi, Plasma Phys. Control. Fusion 46(12B), B457 (2004). https://doi.org/10.1088/0741-3335/46/12b/039

    Article  Google Scholar 

  12. J.P. Chittenden, A. Ciardi, C.A. Jennings, S.V. Lebedev, D.A. Hammer, S.A. Pikuz, T.A. Shelkovenko, Phys. Rev. Lett. 98(2), 025003 (2007). https://doi.org/10.1103/PhysRevLett.98.025003

    Article  ADS  Google Scholar 

  13. V.I. Oreshkin, A.P. Artyomov, S.A. Chaikovsky, E.V. Oreshkin, A.G. Rousskikh, Phys. Plasmas. 24(1), 012703 (2017). https://doi.org/10.1063/1.4974169

    Article  ADS  Google Scholar 

  14. J.E. Bailey, G.A. Chandler, D. Cohen, M.E. Cuneo, M.E. Foord, R.F. Heeter, D. Jobe, P.W. Lake, J.J. MacFarlane, T.J. Nash et al., Phys. Plasmas. 9(5), 2186 (2002). https://doi.org/10.1063/1.1459454

    Article  ADS  Google Scholar 

  15. J. Colgan, D.P. Kilcrease, N.H. Magee, G.S.J. Armstrong, J. Abdallah, M.E. Sherrill, C.J. Fontes, H.L. Zhang, P. Hakel, High Energy Density Phys. 9(2), 369 (2013). https://doi.org/10.1016/j.hedp.2013.03.001

    Article  ADS  Google Scholar 

  16. J. Colgan, D.P. Kilcrease, N.H. Magee, M.E. Sherrill, J. Abdallah Jr., P. Hakel, C.J. Fontes, J.A. Guzik, K.A. Mussack, Astrophys. J. 817(2), 116 (2016). https://doi.org/10.3847/0004-637x/817/2/116

    Article  ADS  Google Scholar 

  17. The Los Alamos OPLIB opacity database, Los Alamos National Laboratory. https://aphysics2.lanl.gov/opacity/lanl. Accessed 1 July 2020

  18. H.K. Chung, M.H. Chen, W.L. Morgan, Y. Ralchenko, R.W. Lee, High Energy Density Phys. 1(1), 3 (2005). https://doi.org/10.1016/j.hedp.2005.07.001

    Article  ADS  Google Scholar 

  19. H.K. Chung, M.H. Chen, R.W. Lee, High Energy Density Phys. 3(1), 57 (2007). https://doi.org/10.1016/j.hedp.2007.02.001

    Article  ADS  Google Scholar 

  20. D.B. Sinars, M.A. Sweeney, C.S. Alexander, D.J. Ampleford, T. Ao, J.P. Apruzese, C. Aragon, D.J. Armstrong, K.N. Austin, T.J. Awe et al., Phys. Plasmas. 27(7), 070501 (2020). https://doi.org/10.1063/5.0007476

    Article  ADS  Google Scholar 

  21. Y. Ralchenko, Modern Methods in Collisional-Radiative Modeling of Plasmas (Springer International Publishing, Cham, 2016).

    Book  Google Scholar 

  22. W. Karzas, R. Latter, Astrophys. J. Suppl. Ser. 6, 167 (1961). https://doi.org/10.1086/190063

    Article  ADS  Google Scholar 

  23. J. Colvin, J. Larsen, Extreme Physics: Properties and Behavior of Matter at Extreme Conditions (Cambridge University Press, Cambridge, 2013), pp. 252–293

    Book  Google Scholar 

  24. G.V. Marr, Phys. Bull. 24(8), 493 (1973). https://doi.org/10.1088/0031-9112/24/8/024

    Article  Google Scholar 

  25. R.P. Drake, High Energy Density Physics: Fundamentals, Inertial Fusion and Experimental Astrophysics (Springer, The Netherlands, 2018).

    Book  Google Scholar 

  26. FLASH manual, FLASH Center, Available via FLASH. http://www.flash.uchicago.edu/. Accessed 1 July

  27. G.S.J. Armstrong, J. Colgan, D.P. Kilcrease, N.H. Magee, High Energy Density Phys. 10, 61 (2014). https://doi.org/10.1016/j.hedp.2013.10.005

    Article  ADS  Google Scholar 

  28. J. Colgan, D.P. Kilcrease, N.H. Magee, M.E. Sherrill, J. Abdallah Jr., P. Hakel, C.J. Fontes, J.A. Guzik, K.A. Mussack, Astrophys. J. (2016). https://doi.org/10.3847/0004-637x/817/2/116

    Article  Google Scholar 

  29. D.P. Kilcrease, N.H. Magee, J. Quant. Spectros. Radiat. Transfer 71(2), 445 (2001). https://doi.org/10.1016/S0022-4073(01)00088-7

    Article  ADS  Google Scholar 

  30. M.S. Cho, K. Matsuo, S. Fujioka, S.J. Hahn, B.I. Cho, H.K. Chung, J. Quant. Spectros. Radiat. Transfer 257, 107369 (2020). https://doi.org/10.1016/j.jqsrt.2020.107369

    Article  Google Scholar 

  31. F. Zucchini, S.N. Bland, C. Chauvin, P. Combes, D. Sol, A. Loyen, B. Roques, J. Grunenwald. Rev. Sci. Instrum. 86(3), 033507 (2015). https://doi.org/10.1063/1.4915496

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Defense Research Laboratory Program of the Defense Acquisition Program Administration and the Agency for Defense Development of the Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. I. Cho or S. J. Hahn.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, M.S., Sohn, J.H., Chung, HK. et al. Analysis on the FLYCHK opacity of X-pinch wire materials. J. Korean Phys. Soc. 78, 1072–1083 (2021). https://doi.org/10.1007/s40042-021-00173-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00173-4

Keywords

Navigation