Skip to main content
Log in

Study on the mechanism for the deposition of a porous zinc thin film by using a modified DC magnetron sputtering system

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The mechanism for the deposition of zinc to form porous thin films is not clearly understood. In this study, a modified direct current (DC) sputtering system was used to deposit polycrystalline porous zinc thin films on an amorphous glass substrate to elucidate the mechanism. Subsequently, the properties of the thin films, such as its film thickness, the average particle size, and its porosity, were investigated under different experimental parameters, including pressure, DC discharge power, and the gas ratio between Ar and He. The plasma properties were also studied using a Langmuir probe. An increase in deposition pressure and DC discharge power was found to increase the deposition thickness and the particle size in the thin films whereas an increase in the He content increased the thickness and decreased the particle size. The investigation of the growth mechanism revealed that the zinc particles were oriented in different planes at early and later stages of deposition. Moreover, the properties of the thin films were observed to be affected by the energy loss of the zinc atoms and the bonding force between the substrate and the zinc particles. This understanding of the mechanism of thin-film formation will help to guide the optimization of experimental parameters in the fabrication of high-quality thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Liu, S.Z. Qiao, Q.H. Hu, G.Q. Lu, Small 7, 418 (2011). https://doi.org/10.1002/smll.201190008

    Article  Google Scholar 

  2. P. Mohanpuria, N.K. Rana, S.K. Yadav, J. Nanopart. Res. 10, 507 (2008). https://doi.org/10.1007/s11051-007-9275-x

    Article  ADS  Google Scholar 

  3. H. Wang, Y. Wang, X. Wang, Electrochem. commun. 18, 92 (2012). https://doi.org/10.1016/j.elecom.2012.02.023

    Article  Google Scholar 

  4. H. Fei, Y. Yang, X. Fan, G. Wang, G. Ruan, J.M. Tour, J. Mater. Chem. A 3, 5798 (2015). https://doi.org/10.1039/c4ta06938b

    Article  Google Scholar 

  5. Y. Yang, H. Fei, G. Ruan, J.M. Tour, Adv. Mater. 27, 3175 (2015). https://doi.org/10.1002/adma.201500894

    Article  Google Scholar 

  6. Z. Dai, L. Xu, G. Duan, T. Li, H. Zhang, Y. Li, Y. Wang, Y. Wang, W. Cai, Sci. Rep. 3, 1 (2013). https://doi.org/10.1038/srep01669

    Article  Google Scholar 

  7. P. Kumar, K.H. Kim, K. Vellingiri, P. Samaddar, P. Kumar, A. Deep, N. Kumar, Biosens. Bioelectron. 104, 120 (2018). https://doi.org/10.1016/j.bios.2018.01.006

    Article  Google Scholar 

  8. Y. Xu, L. Zheng, C. Yang, W. Zheng, X. Liu, J. Zhang, A.C.S. Appl, Mater. Interfaces 12, 20704 (2020). https://doi.org/10.1021/acsami.0c04398

    Article  Google Scholar 

  9. C.K. Hwang, J.M. Kim, S. Hwang, J.H. Kim, C.H. Sung, B.M. Moon, K.H. Chae, J.P. Singh, S.H. Kim, S.S. Jang et al., Adv. Mater. Interfaces 7, 1 (2020). https://doi.org/10.1002/admi.201901326

    Article  ADS  Google Scholar 

  10. P. Liu, X. Ling, C. Zhong, Y. Deng, X. Han, W. Hu, Front. Chem. 7, 1 (2019). https://doi.org/10.3389/fchem.2019.00656

    Article  Google Scholar 

  11. M.N. Masri, M.F.M. Nazeri, C.Y. Ng, A.A. Mohamad, J. King Saud Univ. Eng. Sci. 27, 217 (2015). https://doi.org/10.1016/j.jksues.2013.06.001

    Article  Google Scholar 

  12. Z. Liu, T. Fan, D. Zhang, X. Gong, J. Xu, Sens. Actuators B Chem. 136, 499 (2009). https://doi.org/10.1016/j.snb.2008.10.043

    Article  Google Scholar 

  13. M. Laurenti, V. Cauda, Coatings 8, 67 (2018). https://doi.org/10.3390/coatings8020067

    Article  Google Scholar 

  14. Q. Simon, D. Barreca, A. Gasparotto, C. MacCato, T. Montini, V. Gombac, P. Fornasiero, O.I. Lebedev, S. Turner, G. van Tendeloo, J. Mater. Chem. 22, 11739 (2012). https://doi.org/10.1039/c2jm31589k

    Article  Google Scholar 

  15. R. Chen, C. Zou, X. Yan, A. Alyamani, W. Gao, Thin Solid Films 519, 1837 (2011). https://doi.org/10.1016/j.tsf.2010.10.012

    Article  ADS  Google Scholar 

  16. M.A. Borysiewicz, E. Dynowska, V. Kolkovsky, J. Dyczewski, M. Wielgus, E. Kamińska, A. Piotrowska, Phys. Status Solidi Appl. Mater. Sci. 209, 2463 (2012). https://doi.org/10.1002/pssa.201228041

    Article  ADS  Google Scholar 

  17. Y.G. Wang, S.P. Lau, H.W. Lee, S.F. Yu, B.K. Tay, X.H. Zhang, H.H. Hng, J. Appl. Phys. 94, 354 (2003). https://doi.org/10.1063/1.1577819

    Article  ADS  Google Scholar 

  18. M. Karyaoui, A.B. Jaballah, R. Mechiak, R. Chtourou, I.O.P. Conf, Ser. Mater. Sci. Eng. 28, 1 (2012). https://doi.org/10.1088/1757-899X/28/1/012019

    Article  Google Scholar 

  19. Z. Liu, Z. Jin, W. Li, J. Qiu, Mater. Lett. 59, 3620 (2005). https://doi.org/10.1016/j.matlet.2005.06.064

    Article  Google Scholar 

  20. Z. Chen, A. Xiao, Y. Chen, C. Zuo, S. Zhou, L. Li, J. Phys. Chem. Solids 74, 1522 (2013). https://doi.org/10.1016/j.jpcs.2013.05.015

    Article  ADS  Google Scholar 

  21. L. Van Duy, N.H. Hanh, D.N. Son, P.T. Hung, C.M. Hung, N. van Duy, N.D. Hoa, N. van Hieu, F. Ke, J. Nanomater. 2019, 1 (2019). https://doi.org/10.1155/2019/4867909

    Article  Google Scholar 

  22. E. Michaelis, D. Wöhrle, J. Rathousky, M. Wark, Thin Solid Films 497, 163 (2006). https://doi.org/10.1016/j.tsf.2005.10.072

    Article  ADS  Google Scholar 

  23. D. Vick, T. Smy, M.J. Brett, J. Mater. Res. 17, 2904 (2002). https://doi.org/10.1557/JMR.2002.0421

    Article  ADS  Google Scholar 

  24. H.M. Al Dosari, A.I. Ayesh, J. Appl. Phys. 114, 054305 (2013). https://doi.org/10.1063/1.4817421

    Article  ADS  Google Scholar 

  25. O. Carton, J. Ghaymouni, M. Lejeune, A. Zeinert, J. Spectrosc. 2013, 1 (2013). https://doi.org/10.1155/2013/307824

    Article  Google Scholar 

  26. J. Zeng, M. Hu, W. Wang, H. Chen, Y. Qin, Sens. Actuators B Chem. 161, 447 (2012). https://doi.org/10.1016/j.snb.2011.10.059

    Article  Google Scholar 

  27. F. Oudrhiri-Hassani, L. Presmanes, A. Barnabé, P. Tailhades, Appl. Surf. Sci. 254, 5796 (2008). https://doi.org/10.1016/j.apsusc.2008.03.149

    Article  ADS  Google Scholar 

  28. I. Sandu, L. Presmanes, P. Alphonse, P. Tailhades, Thin Solid Films 495, 130 (2006). https://doi.org/10.1016/j.tsf.2005.08.318

    Article  ADS  Google Scholar 

  29. A. Borrás, A. Barranco, A.R. González-Elipe, J. Mater. Sci. 41, 5220 (2006). https://doi.org/10.1007/s10853-006-0431-y

    Article  ADS  Google Scholar 

  30. Q. Zhou, Z. Li, J. Ni, Z. Zhang, Mater. Trans. 52, 469 (2011). https://doi.org/10.2320/matertrans.m2010342

    Article  Google Scholar 

  31. Q. Zhou, Z. Li, Y. Yang, Z. Zhang, J. Phys. D 41, 152007 (2008). https://doi.org/10.1088/0022-3727/41/15/152007

    Article  ADS  Google Scholar 

  32. R. Chen, C. Zou, X. Yan, W. Gao, Prog. Nat. Sci. Mater. Int. 21, 81 (2001). https://doi.org/10.1016/S1002-0071(12)60041-0

    Article  Google Scholar 

  33. R. Gazia, A. Chiodoni, S. Bianco, A. Lamberti, M. Quaglio, A. Sacco, E. Tresso, P. Mandracci, C.F. Pirri, Thin Solid Films 524, 107 (2012). https://doi.org/10.1016/j.tsf.2012.09.076

    Article  ADS  Google Scholar 

  34. B.Q. Fu, W. Liu, Z.L. Li, Appl. Surf. Sci. 255, 9348 (2009). https://doi.org/10.1016/j.apsusc.2009.07.034

    Article  ADS  Google Scholar 

  35. Z.W. Li, W. Gao, Thin Solid Films 515, 3323 (2007). https://doi.org/10.1016/j.tsf.2006.09.026

    Article  ADS  Google Scholar 

  36. A.K. Abduev, A.K. Akhmedov, A.S. Asvarov, N.M.-R. Alikhanov, R.M. Emirov, A.E. Muslimov, V.V. Belyaev, Crystallogr. Rep. 62, 133 (2017). https://doi.org/10.1134/s1063774517010023

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by a sabbatical year research grant from Korea Polytechnic University and by the Priority Research Center Program (NRF-2017 R1A6A1A03015562) funded by the Ministry of Education (MOE) of the Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee Chul Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rho, S.H., Kim, H.G., Park, S.Y. et al. Study on the mechanism for the deposition of a porous zinc thin film by using a modified DC magnetron sputtering system. J. Korean Phys. Soc. 78, 679–687 (2021). https://doi.org/10.1007/s40042-021-00101-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00101-6

Keywords

Navigation