Skip to main content
Log in

A data-driven event generator for Hadron Colliders using Wasserstein Generative Adversarial Network

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Highly reliable Monte-Carlo event generators and detector simulation programs are important for the precision measurement in the high energy physics. Huge amounts of computing resources are required to produce a sufficient number of simulated events. Moreover, simulation parameters have to be fine-tuned to reproduce situations in the high-energy particle interactions which is not trivial in some phase spaces in physics interests. In this paper, we suggest a new method based on the Wasserstein Generative Adversarial Network (WGAN) that can learn the probability distribution of the real data. Our method is capable of event generation at a very short computing time compared to the traditional MC generators. The trained WGAN is able to reproduce the shape of the real data with high fidelity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. I. Goodfellow et al., Proceedings of the International Conference on Neural Information Processing Systems (NIPS 2014), pp. 2672–2680 (2014)

  2. M. Paganini, L. Oliveira, B. Nachman, Phys. Rev. D 97, 014021 (2018)

    Article  ADS  Google Scholar 

  3. M. Paganini, L. Oliveira, B. Nachman, Phys. Rev. Lett. 120, 042003 (2018)

    Article  ADS  Google Scholar 

  4. B. Hashemi, N. Amin, K. Datta, D. Olivito, M. Pierini,. arXiv:1901.05282 [hep-ex]

  5. R.D. Sipio, M.F. Giannelli, S.K. Haghighat, S. Palazzo, J. High Energy Phys. 08, 110 (2019)

    Article  ADS  Google Scholar 

  6. M. Arjovsky, S. Chintala, L. Bottou, ICML’17: Proceedings of the 34th International Conference on Machine Learning, 70 (ICML 2017) pp. 214–223 (2017)

  7. I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A. Courville, NIPS’17: Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS 2017) pp. 5769–5779 (2017)

  8. M. Erdmann, L. Geiger, J. Glombitza, D. Schmidt, Comput. Softw. Big Sci. 2, 4 (2018)

    Article  Google Scholar 

  9. N. Rahaman et al., Proceedings of the 36th International Conference on Machine Learning (ICML 2019) pp. 5301–5310 (2019)

  10. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, T. Stelzer, J. High Energy Phys. 06, 128 (2011)

    Article  ADS  Google Scholar 

  11. T. Sjstrand et al., Comput. Phys. Commun. 191, 159–177 (2015)

    Article  ADS  Google Scholar 

  12. J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lematre, A. Mertens, M. Selvaggi, J. High Energy Phys. 02, 057 (2014)

    Article  Google Scholar 

  13. The CMS Collaboration, J. Instrum. 3, 8004 (2008)

    Article  Google Scholar 

  14. M. Cacciari, G.P. Salam, G. Soyez, J. High Energy Phys. 04, 063 (2008)

    Article  ADS  Google Scholar 

  15. I. Durugkar, I. Gemp, S. Mahadevan, Conference paper of International Conference on Learning Representations (ICLR 2017) (2017)

  16. M. Abadi et al., https://www.tensorflow.org (2015)

  17. F. Chollet et al., https://keras.io (2015)

  18. L. Mason, J. Baxter, P. Bartlett, M. Frean, Advances in Neural Information Processing Systems 12 (MIT Press, New York, 1999), pp. 512–518

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Research Foundation of Korea (NRF) under Contract No. NRF-2018R1A2B6005043, NRF-2020R1A2C3009918, and the BK21 FOUR program at Korea University, Initiative for science frontiers on upcoming challenges.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Hoon Lim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A. Normalized distributions of momentum components

See Figs. 5, 6 and 7.

Fig. 5
figure 5

The distributions of three momentum components \((p_x, p_y, p_z)\) of the subleading photon

Fig. 6
figure 6

The distributions of three momentum components \((p_x, p_y, p_z)\) of the leading b-jet

Fig. 7
figure 7

The distributions of three momentum components \((p_x, p_y, p_z)\) of the subleading b-jet

B. Normalized distributions of additional variables

See Figs. 8, 9, 10 and 11.

Fig. 8
figure 8

The distributions of \(p_{\text {T}}\) and \(\eta\) of the subleading photon

Fig. 9
figure 9

The distributions of \(p_{\text {T}}\) and \(\eta\) of the leading b-jet

Fig. 10
figure 10

The distributions of \(p_{\text {T}}\) and \(\eta\) of the subleading b-jet

Fig. 11
figure 11

The distributions of invariant mass of two b-jets and \(\Delta R (b\text {-jet}_1, b\text {-jet}_2\))

C. Normalized distributions of the control region

See Fig. 12.

Fig. 12
figure 12

The distributions of the invariant mass of two photons and \(\Delta R (\gamma _{1}, \gamma _{2})\) with the condition of [100, 150] GeV

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, S., Lim, J.H. A data-driven event generator for Hadron Colliders using Wasserstein Generative Adversarial Network. J. Korean Phys. Soc. 78, 482–489 (2021). https://doi.org/10.1007/s40042-021-00095-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00095-1

Keywords

Navigation