Skip to main content
Log in

Isolation of Nanocellulosic Fibrils from Allium cepa L. Skin Biowaste Food Residues: Extraction and Characterization

  • ORIGINAL CONTRIBUTION
  • Published:
Journal of The Institution of Engineers (India): Series E Aims and scope Submit manuscript

Abstract

Biowaste obtained as remains after food processing has remained one of the underutilized sources of value-added products. Extracting valuable constituents from it helps minimize the waste disposal problem along with the added advantage of deriving useful material for various applications. Cellulose nanofiber (CNF) attracted significant attention due to its nanosize, ease of manufacture, low cost, adjustable surface properties, and improved mechanical properties to be extensively applicable in films, coatings, paints, foams and packaging. The study aims to extract CNF from food residues of onion skin using chlorination and alkali extraction processes. The extracted cellulose nanofibers were extensively characterized to determine their structure and properties. The presence of 43.4% of cellulose with lesser content of hemicelluloses (15.1%) and lignin (39.3%) indicated it to be a suitable source for CNF extraction. The purity of the obtained material was assured by indicating the peaks at 2907 cm−1, confirming the presence of stretching vibration of C–H elongation of the –CH2 functional group. Acid hydrolysis treatment of cellulosic microfiber was used to reduce the particle size from 10.61 µm to 100.49 nm, thereby increasing the specific surface area and pore volume from 59.97 to 118.62 m2/g and 0.186 to 0.432 cc/g, respectively. The TGA graph indicated a higher percentage (30%) of CNF content degrading at a higher temperature of 320 °C. TEM images depict that the fibers were in the form of fibrils with very low clusters formation. The obtained nanofiber can be efficiently used as a membrane for gas barrier application and as fillers in biocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Malherbe, T.E. Cloete, Lignocellulose biodegradation: Fundamentals and applications. Rev. Environ. Sci. Biotechnol. 1(2), 105–114 (2002)

    Article  Google Scholar 

  2. E.M. Fernandes, R.A. Pires, J.F. Mano, R.L. Reis, Bionanocomposites from lignocellulosic resources: Properties, applications and future trends for their use in the biomedical field. Prog. Polym. Sci. 38, 1415–1441 (2013)

    Article  Google Scholar 

  3. N. Bumbudsanpharoke, S. Ko, The green fabrication, characterisation and evaluation of catalytic antioxidation of gold nanoparticle-lignocellulose composite papers for active packaging. Int. J. Biol. Macromol. 107, 1782–1791 (2018)

    Article  Google Scholar 

  4. A.G. Barneto, J.A. Carmona, J.E.M. Alfonso, L.J. Alcaide, Use of autocatalytic kinetics to obtain composition of lignocellulosic materials. Bioresour. Technol. 100(17), 3963–3973 (2009)

    Article  Google Scholar 

  5. A. Limayem, S.C. Ricke, Lignocellulosic biomass for bioethanol production: Current perspectives, potential issues and future prospects. Prog. Energy Combust. Sci. 38(4), 449–467 (2012)

    Article  Google Scholar 

  6. A. Ghosh, B. Debnath, S.K. Ghosh, B. Das, J.P. Sarkar, Sustainability analysis of organic fraction of municipal solid waste conversion techniques for efficient resource recovery in India through case studies. J. Mater. Cycles Waste Manag. 20(4), 1969–1985 (2018)

    Article  Google Scholar 

  7. M. Zimniewska, I. Frydrych, J. Mankowski, W. Trywianska, Process and quality control in cultivating natural textile fibres in Process Control in Textile Manufacturing. Elsevier Ltd., Amsterdam, pp 81–108 (2012).

  8. D. Ponnamma, K. K. Sadasivuni, M. A. AlMaadeed, 1-Introduction of Biopolymer Composites: What to Do in Electronics? In: Biopolymer Composites in Electronics Elsevier Inc., Amsterdam, pp 1–12 (2017).

  9. J.I. Morán, V.A. Alvarez, V.P. Cyras, A. Vázquez, Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15(1), 149–159 (2008)

    Article  Google Scholar 

  10. J.K. Saini, R. Saini, L. Tewari, Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. Biotech 5, 337–353 (2015)

    Google Scholar 

  11. Y. Elkony, M. Ali, S. Ebrahim, R. Adel, High photoluminescence polyindole/CuInS quantum dots for Pb ions sensor. J. Inorg. Organomet Polym., pp 1–11 (2022).

  12. K. Mahdavi, S. Zinatloo-Ajabshir, Q. A. Yousif, M. Salavati-Niasari, Enhanced photocatalytic degradation of toxic contaminants using Dy2O3-SiO2 ceramic nanostructured materials fabricated by a new, simple and rapid sonochemical approach. Ultrason Sonochem. 82 (2022).

  13. S.M. Tabatabaeinejad, S. Zinatloo-Ajabshir, O. Amiri, M. Salavati-Niasari, Magnetic Lu2Cu2O5-based ceramic nanostructured materials fabricated by a simple and green approach for an effective photocatalytic degradation of organic contamination. RSC Adv. 11(63), 40100–40111 (2021)

    Article  Google Scholar 

  14. S. Zinatloo-Ajabshir, M. Baladi, M. Salavati-Niasari, Sono-synthesis of MnWO4 ceramic nanomaterials as highly efficient photocatalysts for the decomposition of toxic pollutants. Ceram. Int. 47(21), 30178–30187 (2021)

    Article  Google Scholar 

  15. W. Kricka, T. C. James, J. Fitzpatrick, U. Bond, Engineering Saccharomyces pastorianus for the co-utilisation of xylose and cellulose from biomass. Microbial.Cell Factories. 14(1) (2015).

  16. J. Zhao, W. Zhang, X. Zhang, X. Zhang, C. Lu, Y. Deng, Extraction of cellulose nanofibrils from dry softwood pulp using high shear homogenization. Carbohydr. Polym. 97(2), 695–702 (2013)

    Article  Google Scholar 

  17. E. Abraham, B. Deepa, L.A. Pothan, M. Jacob, S. Thomas, U. Cvelbar, R. Anandjiwala, Extraction of nanocellulose fibrils from lignocellulosic fibres: A novel approach. Carbohydr. Polym. 86(4), 1468–1475 (2011)

    Article  Google Scholar 

  18. D. Klemm, D. Schumann, F. Kramer, N. Hebler, D. Koth, B. Sultanova, Nanocellulose materials—Different cellulose, different functionality. Macromol. Symp. 280(1), 60–71 (2009)

    Article  Google Scholar 

  19. M. S. Atiqah, D. A. Gopakumar, O. FAT, Y. B. Pottathara, S. Rizal, N. A. Aprilia, D. Hermawan, M. T. T. Paridah, S. Thomas and A. K. HPS, Extraction of cellulose nanofibers via eco-friendly supercritical carbon dioxide treatment followed by mild acid hydrolysis and the fabrication of cellulose nanopapers. Polymers. 11(11), 1813 (2019).

  20. T. Yi, H. Zhao, Q. Mo, D. Pan, Y. Liu, L. Huang, H. Xu, B. Hu, H. Song, From cellulose to cellulose nanofibrils—a comprehensive review of the preparation and modification of cellulose nanofibrils. Materials. 13, 1–32 (2020)

    Article  Google Scholar 

  21. H. P. S. Abdul Khalil et al., Production and modification of nanofibrillated cellulose using various mechanical processes: A review. Carbohydr. Polym. 99, 649–665 (2014).

  22. D. Bondeson, A. Mathew, K. Oksman, Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13(2), 171–180 (2006)

    Article  Google Scholar 

  23. N. Khairuddin, Md. Bazlul Mobin Siddique, M. Sobri Merais, N. Husna Che Hamzah, D. Nurshahirah Awang Wahab, In Cellulose Science and Derivatives. IntechOpen, (2021).

  24. J.W. Rhim, J.P. Reddy, X. Luo, Isolation of cellulose nanocrystals from onion skin and their utilization for the preparation of agar-based bio-nanocomposites films. Cellulose 22(1), 407–420 (2015)

    Article  Google Scholar 

  25. C. Galeone, C. Pelucchi, F. Levi, E. Negri, S. Franceschi, R. Talamini, A. Giacosa, C. La Vecchia, Onion and garlic use and human cancer. Am. J. Clin. Nutr. 84(5), 1027–1032 (2006)

    Article  Google Scholar 

  26. H.I. Abdel-Shafy, M.S.M. Mansour, Solid waste issue: Sources, composition, disposal, recycling, and valorization. Egypt. J. Pet. 27, 1275–1290 (2018)

    Article  Google Scholar 

  27. I.S. Choi, E.J. Cho, J.H. Moon, H.J. Bae, Onion skin waste as a valorization resource for the by-products quercetin and biosugar. Food Chem. 188, 537–542 (2015)

    Article  Google Scholar 

  28. J. Gröndahl, K. Karisalmi, J. Vapaavuori, Micro- And nanocelluloses from non-wood waste sources; Processes and use in industrial applications. Soft Matter. 17(43), 9842–9858 (2021)

    Article  Google Scholar 

  29. A. Balea, E. Fuente, M. Concepcion Monte, N. Merayo, C. Campano, C. Negro, A. Blanco, , Industrial application of nanocelluloses in papermaking: A review of challenges, technical solutions, and market perspectives. Molecules. 25(3) (2020).

  30. Q. Zhang, L. Zhang, W. Wu, H. Xiao, Methods and applications of nanocellulose loaded with inorganic nanomaterials: a review. Carbohydr. Polym. 229 (2020).

  31. A. Sharma, M. Thakur, M. Bhattacharya, T. Mandal, S. Goswami, Commercial application of cellulose nano-composites—A review. Biotechnol. Rep. 21 (2019).

  32. H. F. Tan, B. S. Ooi, C. P. Leo, Future perspectives of nanocellulose-based membrane for water treatment. J. Water Process. Eng. 37 (2020).

  33. P. R. Sharma, S. K. Sharma, T. Lindström, B. S. Hsiao, Nanocellulose-enabled membranes for water purification: Perspectives. Adv. Sustain. Syst. 4 (2020).

  34. J.P. Reddy, J.W. Rhim, Extraction and characterization of cellulose microfibers from agricultural wastes of onion and garlic. J. Nat. Fibers. 15, 465–473 (2018)

    Article  Google Scholar 

  35. American Society for Testing and Materials (ASTM), Standard specification for woven wire test sieve cloth and test sieves. ASTM E11-09 (2009).

  36. K. Kurschner, A. Hanak, Zur Bestimmung der sog. Rohfaser. Z Lebensm Unters Forsch. 59, 448–485 (1930)

    Google Scholar 

  37. T.A. Scott, E.H. Melvin, Determination of dextran with anthrone. Anal. Chem. 25(11), 1656–1661 (1953)

    Article  Google Scholar 

  38. L. Dampanaboina, N. Yuan, V. Mendu, Estimation of crystalline cellulose content of plant biomass using the updegraff method. J. Vis. Exp. 171, e62031 (2021)

    Google Scholar 

  39. C. Uma Maheswari, K. Obi Reddy, E. Muzenda, B. R. Guduri, A. Varada Rajulu, Extraction and characterization of cellulose microfibrils from agricultural residue—Cocos nucifera L. Biomass Bioenergy. 46, 555–563 (2012).

  40. K. Luo, Y. Wang, H. Xiao, G. Song, Q, Cheng, G. Fan, Preparation of convertible cellulose from rice straw using combined organosolv fractionation and alkaline bleaching in IOP Conference Series: Earth and Environmental Science. Institute of Physics Publishing, 23, (2019).

  41. V. Benítez, E. Mollá, M.A. Martín-Cabrejas, Y. Aguilera, F.J. López-Andréu, K. Cools, L.A. Terry, R.M. Esteban, Characterization of Industrial Onion Wastes (Allium cepa L.): Dietary Fibre and Bioactive Compounds. Plant Foods Hum. Nutr. 66(1), 48–57 (2011).

  42. B. R. Guduri, H. Semosa, Y. Z. Meng, Green composites from woven flax fiber and bio-copolyester in ICCM International Conferences on Composite Materials. International Committee on Composite Materials (2009).

  43. D. A. Gopakumar, S. Thomas, Y. Grohens, in Multifunctional Polymeric Nanocomposites Based on Cellulosic Reinforcements. Elsevier Inc., Amsterdam, pp 253–275 (2016).

  44. N. S. Sharip, H. Ariffin, Cellulose nanofibrils for biomaterial applications. Mater. Today: Proc., 16, 1959–1968 (2019).

  45. C. Moser, G. Henriksson, M.E. Lindström, Specific surface area increase during cellulose nanofiber manufacturing related to energy input. BioRes. 11(3), 7124–7132 (2016)

    Article  Google Scholar 

  46. W. Liu, Y. Zhang, S. Wang, L. Bai, Y. Deng and J. Tao, Effect of pore size distribution and amination on adsorption capacities of polymeric adsorbents. Molecules. 26(17) (2021).

  47. D. Datta, G. Halder, Blending of phthalated starch and surface functionalized rice husk extracted nanosilica with LDPE towards developing an efficient packaging substitute. Environ. Sci. Pollut. Res. 27(2), 1533–1557 (2020)

    Article  Google Scholar 

  48. N. Zhang, P. Tao, Y. Lu, S. Nie, Effect of lignin on the thermal stability of cellulose nanofibrils produced from bagasse pulp. Cellulose 26(13), 7823–7835 (2019)

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bimal Das.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Datta, D., Pamanji, D. & Das, B. Isolation of Nanocellulosic Fibrils from Allium cepa L. Skin Biowaste Food Residues: Extraction and Characterization. J. Inst. Eng. India Ser. E 104, 141–151 (2023). https://doi.org/10.1007/s40034-022-00259-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40034-022-00259-z

Keywords

Navigation