Skip to main content

Advertisement

Log in

Analyse the Effect of Enthalpy/Temperature Drops in Pipelines on the Performance of Coal-Fired Thermal Power Plant

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

In this research work, the effects of enthalpy/temperature drops in various pipelines on the performance of coal-fired thermal power plant have been analysed. Power outputs, heat rates, entropy generation rates, entropy generation numbers, exergy destruction rates, effectiveness, entransy dissipation rates, entransy dissipation-based thermal resistances and entransy dissipation numbers have been analysed for various components of the power plant at different enthalpy/temperature drops. Percentage changes (i.e. increments/decrements) in different parameters have also been calculated for a finite range of thermodynamic property drops. This analytical work can be concluded as: Maximum exergy destruction and entropy generation rates have been found for the boiler as 221,051.3 kW and 729.54 kW/K, respectively, at 100% load. The maximum energy rate has been converted in the intermediate-pressure steam turbine as 57,956.21 kW at 100%. Minimum exergy destruction and entropy generation rates have been obtained for low-pressure turbine as 5059.25 kW and 16.69 kW/K, respectively. It has also been found exergy destruction and entropy generation rates increase with enthalpy drop. Percentage increments in the exergy destruction and entropy generation rates also increase with enthalpy drop. Several recommendations have been given to the improvement of the plant outputs; maximum energy is converted in intermediate-pressure turbine so number of stages should be increased as compared to other steam turbines. Power plant should be operated on full load condition. Extraction pipelines should be properly insulated and better insulated pipe material should be used for the pipelines. Performance of feed water heaters can also be increased by preheating arrangement, i.e. solar water heaters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

CFPP:

Coal-fired thermal power plant

C p :

Specific heat of flowing fluids (kJ/kg K)

EDR:

Entransy dissipation rates (kW K)

EQi :

Extraction quantities from different stages of HP, IP and LP turbines (kg/s)

ExDR:

Exergy destruction rate (kW)

G :

Entransy (kW K)

h i :

Enthalpies at different stages of HP, IP and LP turbines (kJ/kg)

LKi :

Leakages from different stages of HP, IP and LP turbines (kg/s)

P :

Pressure of steam for CFPP (bar)

Q :

Heat addition in boiler/superheater (kW)

T :

Temperature (K)

V :

Specific volume of steam for CFPP (m3/kg)

m :

Mass flow rate of steam for CFPP (kg/s)

References

  1. A. Geete, A. Bhargava, Combined effect of various operating loads, number of feed water heaters and makeup water quantities on the performance of coal fired thermal power plant: a case study. Cogent Eng. 3(2015), 1–7 (2016). https://doi.org/10.1080/23311916.2016.1218115

    Article  Google Scholar 

  2. K.C. Cotton, Evaluating and Improving Steam Turbine Performance (Cotton Fact Inc, New York, 1993)

    Google Scholar 

  3. A. Geete, A.I. Khandwawala, Entropy generation and entransy dissipation analysis for steam power plants using developed computer-aided software. IUP J. Mech. Eng. 7(4), 31–57 (2014)

    Google Scholar 

  4. A. Geete, A.I. Khandwawala, Exergy analysis for 120 MW thermal power plant with different inlet temperature conditions. Int. J. Res. Eng. Technol. 2(1), 21–30 (2014)

    Google Scholar 

  5. A. Geete, A.I. Khandwawala, Exergy analysis for 120 MW thermal power plant with different inlet pressure conditions and generate exergy outlet curves for different components. Asian Acad. Res. J. Multidiscip. 1(18), 234–247 (2014)

    Google Scholar 

  6. R. Yadav, Steam and Gas Turbines and Power Plant Engineering (Central Publishing House Allahabad, New Delhi, 2007)

    Google Scholar 

  7. A. Geete, Componentwise thermodynamic analysis of thermal power plant by designed software. J. Autom. Control Eng. 4(4), 279–284 (2016)

    Article  Google Scholar 

  8. A. Geete, Exergy, exergy destruction rate and exergy efficiency analysis of thermal power plants by computer software at various operating conditions. i-manager’s J. Future Eng. Technol. 11(1), 7–22 (2015)

    Article  Google Scholar 

  9. A. Geete, A.I. Khandwawala, Thermodynamic analysis of thermal power plant with combined effect of constant inlet temperature (507.78 °C) and different inlet pressures. IUP J. Mech. Eng. 8(3), 38–49 (2015)

    Google Scholar 

  10. A. Geete, J. Panchal, R. Mishra, R. Chhalotra, R.S. Rajput, S. Waghe, Experimental analysis of designed and fabricated helical tube type heat exchanger with copper and mild steel tube materials. Inventi Impact Mech. Eng. 4, 183–188 (2015)

    Google Scholar 

  11. V. Mahajan, A. Geete, G.V.R.S. Rao, CFD analysis of nano fluid across in line tube banks of heat exchanger. Int. J. Rapid Res. Eng. Technol. Appl. Sci. 2(7), 1–7 (2016)

    Google Scholar 

  12. A. Pahare, A. Geete, A.C. Tiwari, Analytical investigation of cooling capacity of wavy fin compact heat exchanger by using Al2O3 and ZnO nano particles in water coolant. VSRD Int. J. Mech. Civ. Automob. Prod. Eng. 6(10), 257–264 (2016)

    Google Scholar 

  13. V. Sisodiya, A. Geete, Heat transfer analysis of helical coil heat exchanger with Al2O3 nano fluid. Int. Res. J. Eng. Technol. 3(12), 366–370 (2016)

    Google Scholar 

  14. L.G. Chen, Progress in entransy theory and its applications. Chin. Sci. Bull. 57(34), 4404–4426 (2012)

    Article  Google Scholar 

  15. L.G. Chen, Progress in optimization of mass transfer processes based on mass entransy dissipation extremum principle. Sci. China Technol. Sci. 57(12), 2305–2327 (2014)

    Article  Google Scholar 

  16. L.G. Chen, H.J. Feng, Z.H. Xie, Generalized thermodynamic optimization for iron and steel production processes: theoretical exploration and application cases. Entropy 18(10), 353 (2016)

    Article  Google Scholar 

  17. L.G. Chen, K. Ma, Y.L. Ge, F.R. Sun, Minimum entropy generation path for an irreversible light-driven engine with reacting system and linear phenomenological heat transfer law. Environ. Eng. Manag. J. 16(9), 2035–2043 (2017)

    Article  Google Scholar 

  18. L.G. Chen, F.R. Sun, Advances in Finite Time Thermodynamics: Analysis and Optimization (Nova Science Publishers, New York, 2004)

    Google Scholar 

  19. L.G. Chen, C. Wu, F.R. Sun, Finite time thermodynamic optimization or entropy generation minimization of energy systems. J. Non-Equilib. Thermodyn. 24(4), 327–359 (1999)

    Article  MATH  Google Scholar 

  20. L.G. Chen, S.J. Xia, F.R. Sun, Entropy generation minimization for isothermal crystallization processes with a generalized mass diffusion law. Int. J. Heat Mass Transf. 116, 1–8 (2018)

    Article  Google Scholar 

  21. L.G. Chen, Q.H. Xiao, H.J. Feng, Constructal optimizations for heat and mass transfers based on the entransy dissipation extremum principle, performed at the Naval Univerisity of Engineering; a review. Entropy 20(1), 74 (2018)

    Article  Google Scholar 

  22. L.G. Chen, A.B. Yang, Z.H. Xie, H.J. Feng, F.R. Sun, Constructal entropy generation rate minimization for cylindrical pin-fin heat sinks. Int. J. Therm. Sci. 111, 168–174 (2017)

    Article  Google Scholar 

  23. L.G. Chen, L. Zhang, S.J. Xia, F.R. Sun, Entropy generation minimization for hydrogenation of CO2 to light olefins. Energy 147, 187–196 (2018)

    Article  Google Scholar 

  24. H.J. Feng, L.G. Chen, Z.H. Xie, F.R. Sun, Disc-point” heat and mass transfer constructal optimization for solid-gas reactors based on entropy generation minimization. Energy 83, 431–437 (2015)

    Article  Google Scholar 

  25. H.J. Feng, L.G. Chen, Z.H. Xie, F.R. Sun, Constructal entropy generation rate minimization for asymmetric vascular networks in a disc-shaped body. Int. J. Heat Mass Transf. 91, 1010–1017 (2015)

    Article  Google Scholar 

  26. H.J. Feng, L.G. Chen, X. Liu, Z.H. Xie, F.R. Sun, Generalized constructal optimization of strip laminar cooling process based on entransy theory. Sci. China Technol. Sci. 59(11), 1687–1695 (2016)

    Article  Google Scholar 

  27. H.J. Feng, L.G. Chen, Z.H. Xie, F.R. Sun, Constructal entransy dissipation rate minimization of a rectangular body with nonuniform heat generation. Sci. China Technol. Sci. 59(9), 1352–1359 (2016)

    Article  Google Scholar 

  28. H.J. Feng, L.G. Chen, Z.H. Xie, Constructal optimizations for “+” shaped high conductivity channels based on entransy dissipation rate minimization. Int. J. Heat Mass Transf. 119, 640–646 (2018)

    Article  Google Scholar 

  29. S.J. Xia, L.G. Chen, F.R. Sun, Optimization of equimolar reverse constant- temperature mass-diffusion process for minimum entransy dissipation. Sci. China Technol. Sci. 59(12), 1867–1873 (2016)

    Article  Google Scholar 

  30. S.J. Xia, L.G. Chen, Z.H. Xie, F.R. Sun, Entransy dissipation minimization for generalized heat exchange process. Sci. China Technol. Sci. 59(10), 1507–1516 (2016)

    Article  Google Scholar 

  31. J. Li, H. Guo, Q. Cheng, S. Huang, Optimal turbine pressure drop for solar chimney-aided dry cooling system in coal-fired power plants. Energy Convers. Manag. 133, 87–96 (2017)

    Article  Google Scholar 

  32. A.J. Mahvi, A.S. Rattner, J. Lin, S. Garimella, Challenges in predicting steam-side pressure drop and heat transfer in air-cooled power plant condensers. Appl. Therm. Eng. 133, 396–406 (2018)

    Article  Google Scholar 

  33. D. Neshumayev, L. Rummel, A. Konist, A. Ots, T. Parve, Power plant fuel consumption rate during load cycling. Appl. Energy 224, 124–135 (2018)

    Article  Google Scholar 

  34. R. Rabehi, A. Chaker, T. Ming, T. Gong, Numerical simulation of solar chimney power plant adopting the fan model. Renew. Energy 126, 1093–1101 (2018)

    Article  Google Scholar 

  35. P. Datta, N. Nandi, Study on pressure drop characteristics of single phase turbulent flow in pipe bend for high Reynolds number. ARPN J. Eng. Appl. Sci. 10(5), 2221–2226 (2015)

    Google Scholar 

  36. F.A. Hamad, F. Faraji, C.G.S. Santim, N. Basha, Z. Ali, Investigation of pressure drop in horizontal pipes with different diameters. Int. J. Multiph. Flow 91, 120–129 (2017)

    Article  MathSciNet  Google Scholar 

  37. S. Li, Y. Jiang, W. Cai, Q. Li, H. Zhang, Y. Ren, The influence of structural parameters on heat transfer and pressure drop for hydrocarbon mixture refrigerant during condensation in enhanced spiral pipes. Appl. Therm. Eng. 140, 759–774 (2018)

    Article  Google Scholar 

  38. B.P. Naidek, L.Y. Kashiwakura, R.F. Alves, C.L. Bassani, H. Stel, R.E.M. Morales, Experimental analysis of horizontal liquid-gas slug flow pressure drop in d-type corrugated pipes. Exp. Therm. Fluid Sci. 81, 234–243 (2017)

    Article  Google Scholar 

  39. A.A. Olufemi, A. Ademola, O. Olalekan, Effect of turbulence flow on pressure drop in a single phase vertical pipe. Open Pet. Eng. J. 4, 1–8 (2011)

    Article  Google Scholar 

  40. J. Wang, S. Wang, T. Zhang, F. Battaglia, Mathematical and experimental investigation on pressure drop of heterogeneous ice slurry flow in horizontal pipes. Int. J. Heat Mass Transf. 108, 2381–2392 (2017)

    Article  Google Scholar 

  41. A. Geete, A.I. Khandwawala, To analyse the combined effect of different extraction line pressure drops on the performance of coal fired thermal power plant. Int. J. Ambient Energy 38(4), 389–394 (2017). https://doi.org/10.1080/01430750.2015.1121919

    Article  Google Scholar 

  42. A. Geete, Performance analysis of thermal power plant under various operating conditions: a case study. MAYFEB J. Mech. Eng. 1(2016), 1–9 (2016)

    Google Scholar 

  43. A. Geete, A.I. Khandwawala, Thermodynamic analysis of 120 MW thermal power plant with combined effect of constant inlet pressure (127.06 bar) and different condenser back pressures. IUP J. Mech. Eng. 7(1), 25–46 (2014)

    Google Scholar 

  44. A. Geete, A.I. Khandwawala, Thermodynamic analysis of 120 MW thermal power plant with combined effect of constant inlet pressure (124.61 bar) and different inlet temperatures. Case Stud. Therm. Eng. 1(1), 17–25 (2013)

    Article  Google Scholar 

  45. A. Geete, A.I. Khandwawala, Generate correction curves for 120 MW thermal power plant for extraction line pressure drop (heater no. 6) with the help of designed computer aided software. Int. J. Mech. Eng. Appl. Res. 4(1), 229–233 (2013)

    Google Scholar 

  46. A. Geete, A.I. Khandwawala, Exergy analysis of 120 MW thermal power plant with different condenser back pressure and generate correction curves. Int. J. Curr. Eng. Technol. 3(1), 164–167 (2013)

    Google Scholar 

  47. A. Geete, A.I. Khandwawala, Thermodynamic analysis of 120 MW thermal power plant by designed computer aided software for different inlet temperature conditions and generate correction curves. Int. J. Therm. Technol. 3(1), 20–22 (2013)

    Google Scholar 

  48. A. Geete, A.I. Khandwawala, Thermodynamic analysis of 120 MW thermal power plant and generate correction curves for extraction line pressure drop (heater no. 5) with the help of designed computer aided software. Int. J. Mech. Eng. 57(2013), 14301–14304 (2013)

    Google Scholar 

  49. A. Geete, Application of exergy and entransy concepts to analyses performance of coal fired thermal power plant: a case study. Int. J. Ambient Energy (2019). https://doi.org/10.1080/01430750.2019.1586762

    Article  Google Scholar 

  50. A. Geete, A.I. Khandwawala, Generation of correction curve for pressure drop in extraction line for heater number 5 for 120 MW thermal power plant. J. Mech. Eng. 123(2013), 153–157 (2013)

    Google Scholar 

  51. A. Geete, A.I. Khandwawala, Generation of correction curves for power and heat rate by thermodynamic analysis of combined effect of inlet pressure (123.14 bar) and different inlet temperatures on thermal power plant. J. Mech. Eng. 61(2013), 17059–17063 (2013)

    Google Scholar 

  52. A. Geete, A.I. Khandwawala, Effect of different inlet pressure conditions on 120 MW thermal power plants and generate correction curves. VSRD Int. J. Mech. Automob. Prod. Eng. 2(8), 282–286 (2012)

    Google Scholar 

  53. A. Geete, Exergy, entransy and entransy based thermal resistance analyses of double pipe heat exchanger with different pipe materials. Heat Transf. Res. 48(18), 1625–1636 (2017). https://doi.org/10.1615/HeatTransRes.2017015641

    Article  Google Scholar 

  54. A. Geete, Comparative performance analysis of concentric tube type heat exchanger at various operating conditions with copper and aluminum tube materials. Int. J. Ambient Energy (2017). https://doi.org/10.1080/01430750.2017.1318783

    Article  Google Scholar 

  55. A. Geete, V. Patel, S.S. Tanwar, S. Kushwah, N.S. Lodhi, V. Kushwah, Thermodynamic analysis of designed and fabricated shell and tube type heat exchanger by DSTHE software: Kern method. Int. J. Ambient Energy (2017). https://doi.org/10.1080/01430750.2017.1303637

    Article  Google Scholar 

  56. A. Geete, D. Kharve, H. Patel, H. Karma, A. Prajapati, S. Sharma, Comparative exergy and exergy efficiency analyses of fabricated single and double slope solar still plants at Indore: case study. SN Appl. Sci. 2, 963 (2020). https://doi.org/10.1007/s42452-020-2763-7

    Article  Google Scholar 

  57. Z.Y. Guo, H.Y. Zhu, X.G. Liang, Entransy—a physical quantity describing heat transfer ability. Int. J. Heat Mass Transf. 50, 2545–2556 (2007)

    Article  MATH  Google Scholar 

  58. X.T. Cheng, X.G. Liang, Entransy, entransy dissipation and entransy loss for analyses of heat transfer and heat-work conversion processes. J. Therm. Sci. Technol. 8(2), 337–352 (2013)

    Article  Google Scholar 

  59. J.F. Guo, L. Cheng, M.T. Xu, Entransy dissipation number and its Application to heat exchanger Performance Evaluation. Chin. Sci. Bull. 54(15), 2708–2713 (2009)

    Google Scholar 

  60. A.Y. Cengel, Heat Transfer: A Practical Approach (Tata McGraw-Hill Publication, New York, 2003)

    Google Scholar 

  61. J.P. Holman, Heat Transfer (Tata McGraw-Hill Publications, New York, 2009)

    Google Scholar 

  62. H.J. Lienhard, A Heat Transfer Text Book (Phlogiston Press, Cambridge, MA, 2008)

    Google Scholar 

  63. S. Whitaker, Fundamental Principles of Heat Transfer Florida: Robert E (Robert E. Krieger Publishing Company, Inc.Krieger Drivemalabar, Florida, 1983)

    Google Scholar 

  64. A. Geete, Performance analyses of coal-fired thermal power plant using parabolic solar collectors for feed water heaters. Aust. J. Mech. Eng. (2020). https://doi.org/10.1080/14484846.2019.1706226

    Article  Google Scholar 

Download references

Acknowledgements

This work was done at Sushila Devi Bansal College of Technology, Indore, India. There is no conflict of interest. Author is very thankful to BHEL Bhopal for providing useful information/data which are used in this case study. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit stores.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankur Geete.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geete, A. Analyse the Effect of Enthalpy/Temperature Drops in Pipelines on the Performance of Coal-Fired Thermal Power Plant. J. Inst. Eng. India Ser. C 102, 603–628 (2021). https://doi.org/10.1007/s40032-021-00671-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-021-00671-1

Keywords

Navigation