Skip to main content
Log in

Three-Phase Distribution Static Compensator for Power Quality Improvement

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series B Aims and scope Submit manuscript

Abstract

Distribution systems with three-phase three-wire, four-wires face several power quality issues, including a high burden of reactive power, load imbalances, poor voltage regulation, and in four wire system there is an excessive neutral current. Several customized power devices are recommended to mitigate power quality issues that may develop in the system. A distribution static compensator is used to compensate for power quality concerns on distribution side. The research focuses on the application of DSTATCOM. This article describes how to use an synchronous reference frame (SRFT) to design a Nonlinear load pose power quality issues; hence, a Distribution static compensator is needed for compensation for three wire and four wire distribution system. The proposed SRFT approach is utilized to extract the current components required for creating a voltage source converter (VSC) reference signal. The DSTATCOM employs this technique to remove harmonics, reactive power from the three-phase distribution system. MATLAB is used to design and build the entire system. The simulation results suggest that the methodology is effective in correcting for PQ issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57
Fig. 58
Fig. 59
Fig. 60
Fig. 61
Fig. 62
Fig. 63
Fig. 64
Fig. 65
Fig. 66
Fig. 67
Fig. 68
Fig. 69
Fig. 70
Fig. 71
Fig. 72
Fig. 73
Fig. 74
Fig. 75
Fig. 76
Fig. 77
Fig. 78
Fig. 79
Fig. 80
Fig. 81
Fig. 82
Fig. 83

Similar content being viewed by others

References

  1. G. Pathak, D. Mohanty et al., Implementation of MVF-Based control technique for 3 φ distribution static compensator. J. Inst. Eng. India Ser. B (2019). https://doi.org/10.1007/s40031-019-00417-9

    Article  Google Scholar 

  2. E.S. Ali, S.M. Abd Elazim, A.Y. Abdelaziz, Ant lion optimization algorithm for optimal location and sizing of renewable distributed generations. Renew. Energy 101, 1311–1324 (2017). https://doi.org/10.1016/j.renene.2016.09.023

    Article  Google Scholar 

  3. F.H. Gandoman, A. Ahmadi, A.M. Sharaf, P. Siano, J. Pou, B. Hredzak, V.G. Agelidis, Review of FACTS technologies and applications for power quality in smart grids with renewable energy systems. Renew. Sustain. Energy Rev. 82, 502–514 (2018). https://doi.org/10.1016/j.rser.2017.09.062

    Article  Google Scholar 

  4. A. Dheepanchakkravarthy et al., Performance analysis of FPGA controlled four leg DSTATCOM for multifarious load compensation in electric distribution system. Eng. Sci. Technol. Int. J. 21(4), 692–703 (2018)

    Google Scholar 

  5. A.M. Sharaf, A.A. Abdelsalam, A FACTS based static switched filter compensator for smart distribution grid. Aust. J. Electr. Electron. Eng. (2013). https://doi.org/10.7158/1448837X.2013.11464356

    Article  Google Scholar 

  6. H. Liao, S. Abdelrahman, J.V. Milanovic, Zonal mitigation of power quality using FACTS devices for provision of differentiated quality of electricity supply in networks with renewable generation. IEEE Trans. Power Deliv. (2017). https://doi.org/10.1109/TPWRD.2016.2585882

    Article  Google Scholar 

  7. K. Venkatraman, S. Moorthi, M.P. Selvan, P. Raja, K. Deepa, Performance evaluation of FPGA controlled DSTATCOM for load compensation. Arab. J Sci. Eng. 41(9), 3355–3367 (2015). https://doi.org/10.1016/j.jestch.2018.05.004

    Article  MathSciNet  MATH  Google Scholar 

  8. C. Kumar, M.K. Mishra, An improved hybrid DSTATCOM topology to compensate reactive and nonlinear loads. IEEE Trans. Ind. Electron. 61(12), 6517–6527 (2014). https://doi.org/10.1109/TIE.2014.2321355

    Article  Google Scholar 

  9. H. Golwala, R. Chudamani, New three-dimensional space vector-based switching signal generation technique without null vectors and with reduced switching losses for a grid-connected four-leg inverter. IEEE Trans. Power Electron. 31(2), 1026–1035 (2015). https://doi.org/10.1109/TPEL.2015.2414875

    Article  Google Scholar 

  10. V. Kamatchi Kannan, N. Rengarajan, Photovoltaic based distribution static compensator for power quality improvement. Int. J. Electr. Power Power Syst. (2012). https://doi.org/10.1016/j.ijepes.2012.04.061

    Article  Google Scholar 

  11. C.K. Sundarabalan, PEM fuel cell supported distribution static compensator for power quality enhancement in three-phase four-wire distribution system. Int. J. Hydrog. Power (2014). https://doi.org/10.1016/j.ijhydene.2014.09.086

    Article  Google Scholar 

  12. J.I. Yutaka Ota, Y. Shibano, N. Niimura et al., “A phase-shifted-PWM D-STATCOM using a modular multilevel cascade converter (SSBC)—part I: modelling, analysis, and design of current control. IEEE Trans. Ind. Appl. 51(1), 279–288 (2014). https://doi.org/10.1109/TIA.2014.2326079

    Article  Google Scholar 

  13. M. İnci, K.Ç. Bayındır, M. Tümay, Improved synchronous reference frame based controller method for multifunctional compensation. Electr. Power Syst. Res. 141, 500–509 (2016). https://doi.org/10.1016/j.epsr.2016.08.033

    Article  Google Scholar 

  14. C. Kumar, M.K. Mishra, M. Liserre, Design of external inductor for improving performance of voltage-controlled DSTATCOM. IEEE Trans. Ind. Electron. 63(8), 4674–4682 (2016). https://doi.org/10.1109/TIE.2016.2552148

    Article  Google Scholar 

  15. D.B. Kanase, A.R. Thorat, H.T. Jadhav. Distribution static compensator for power quality improvement using PV array, in IEEE international conference of electrical, computer and communications technologies (ICECCT), 2015. https://doi.org/10.1109/ICECCT.2015.7225995

  16. R.K. Varma, M.A. Kelishadi, Simultaneous fast frequency control and power oscillation damping by utilizing PV Solar System as PV-STATCOM. IEEE Trans. Sust. Energy 11(1), 415–425 (2019). https://doi.org/10.1109/TSTE.2019.2892943

    Article  Google Scholar 

  17. C.K. Sundarabalan, Y. Puttagunta, V. Vignesh, Fuel cell integrated unified power quality conditioner for voltage and current reparation in four-wire distribution grid. IET Smart Grid (2019). https://doi.org/10.1049/iet-stg.2018.0148

    Article  Google Scholar 

  18. F. Wu, L. Zhang, J. Duan, A new two-phase stationary frame based enhanced PLL for three-phase grid synchronization. IEEE Trans. Circuits Syst. II Express Br. 62(3), 251–255 (2015). https://doi.org/10.1109/TCSII.2014.2368257

    Article  Google Scholar 

  19. B. Singh, P. Jayaprakash, D.P. Kothari, Three-leg voltage source converter integrated with T-connected transformer as three-phase four-wire distribution static compensator for power quality improvement. Electr. Power Compon. Syst. (2009). https://doi.org/10.1080/15325000902817101

    Article  Google Scholar 

  20. D. Sreenivasarao, P. Agarwal, B. Das, A T-connected transformer based hybrid D-STATCOM for three-phase, four wire systems. Electr. Power Energy Syst. 44, 964–970 (2013). https://doi.org/10.1016/j.ijepes.2012.08.019

    Article  Google Scholar 

  21. M. Badoni, A. Singh, B. Singh, Variable forgetting factor recursive least square control algorithm for DSTATCOM. IEEE Trans. Power. Deliv. 30(5), 2353–2361 (2015). https://doi.org/10.1109/TPWRD.2015.2422139

    Article  Google Scholar 

  22. M. Kandpal, I. Hussain, Control of grid tied smart PV-DSTATCOM system using an adaptive technique. IEEE Trans. Smart Grid 9(5), 3986–3993 (2018). https://doi.org/10.1109/TSG.2016.2645600

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Digvijay B. Kanase.

Ethics declarations

Conflict of interest

The authors have not disclosed any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Parameters

Source

415 Volt, Frequency = 50 Hz, Source resistance = 0.0287, Source inductance = 0.2047 mH

Load

Balanced load condition: R = 26 Ω, L = 5mH, Li = 2.6 mH

Unbalanced load: Za = 18.2 + j3.66 Ω, Zb = 28.26 + j3.661 Ω, Zc = 33.25 + j5.23 Ω

Dynamic load condition: Za = Zb = Zc = 12.35 + j1.57 Ω

Reference voltage (DC)

Vdc = 700 Volts

DC capacitor

Cdc = 2000 µf

Filter

Lf = 4.26 *10−3

H Cf = 10 µf

Rf = 5 Ω

Switching frequency

25 kHz

VSC rating

7 KVA

PI controller

Kp = 0.16, Ki = 6

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanase, D.B., Jadhav, H.T. Three-Phase Distribution Static Compensator for Power Quality Improvement. J. Inst. Eng. India Ser. B 103, 1809–1826 (2022). https://doi.org/10.1007/s40031-022-00767-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40031-022-00767-x

Keywords

Navigation