Skip to main content
Log in

Artificial Intelligence Techniques for Predicting and Mapping Daily Pan Evaporation

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series A Aims and scope Submit manuscript

Abstract

In this study, Artificial Intelligence techniques such as Artificial Neural Network (ANN), Model Tree (MT) and Genetic Programming (GP) are used to develop daily pan evaporation time-series (TS) prediction and cause-effect (CE) mapping models. Ten years of observed daily meteorological data such as maximum temperature, minimum temperature, relative humidity, sunshine hours, dew point temperature and pan evaporation are used for developing the models. For each technique, several models are developed by changing the number of inputs and other model parameters. The performance of each model is evaluated using standard statistical measures such as Mean Square Error, Mean Absolute Error, Normalized Mean Square Error and correlation coefficient (R). The results showed that daily TS-GP (4) model predicted better with a correlation coefficient of 0.959 than other TS models. Among various CE models, CE-ANN (6-10-1) resulted better than MT and GP models with a correlation coefficient of 0.881. Because of the complex non-linear inter-relationship among various meteorological variables, CE mapping models could not achieve the performance of TS models. From this study, it was found that GP performs better for recognizing single pattern (time series modelling), whereas ANN is better for modelling multiple patterns (cause-effect modelling) in the data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. V.P. Singh, C.-Y. Xu, Evaluation and generalization of 13-mass transfer equations for determining free water evaporation. Hydrol. Process. 11(3), 311–323 (1997). doi:10.1002/(SICI)1099-1085(19970315)11:3<311:AID-HYP446>3.0.CO;2-Y

    Article  Google Scholar 

  2. Ö. Kişi, Daily pan evaporation modelling using multi-layer perceptrons and radial basis neural networks. Hydrol. Process. 23(2), 213–223 (2009). doi:10.1002/hyp.7126

    Article  Google Scholar 

  3. R. Arunkumar, V. Jothiprakash, Reservoir evaporation prediction using data driven techniques. J. Hydrol. Eng. 18(1), 40–49 (2013). doi:10.1061/(ASCE)HE.1943-5584.0000597

    Article  Google Scholar 

  4. A. Guven, Ö. Kişi, Daily pan evaporation modeling using linear genetic programming technique. Irrig. Sci. 29(2), 135–145 (2011). doi:10.1007/s00271-010-0225-5

    Article  Google Scholar 

  5. K.P. Sudheer, A.K. Gosain, D. Mohana Rangan, S.M. Saheb, Modelling evaporation using an artificial neural network algorithm. Hydrol. Process. 16(16), 3189–3202 (2002). doi:10.1002/hyp.1096

    Article  Google Scholar 

  6. Ö. Kişi, Modeling monthly evaporation using two different neural computing techniques. Irrig. Sci. 27(5), 417–430 (2009). doi:10.1007/s00271-009-0158-z

    Article  Google Scholar 

  7. A. Rahimikhoob, Estimating daily pan evaporation using artificial neural network in a semi-arid environment. Theor. Appl. Climatol. 98(1–2), 101–105 (2009). doi:10.1007/s00704-008-0096-3

    Article  Google Scholar 

  8. H. Tabari, S. Marofi, A.-A. Sabziparvar, Estimation of daily pan evaporation using artificial neural network and multivariate non-linear regression. Irrig. Sci. 28(5), 399–406 (2010). doi:10.1007/s00271-009-0201-0

    Article  Google Scholar 

  9. M.E. Keskin, Ö. Terzi, Artificial neural network models of daily pan evaporation. J. Hydrol. Eng. 11(1), 65–70 (2006). doi:10.1061/(ASCE)1084-0699(2006)11:1(65)

    Article  Google Scholar 

  10. J. Shiri, Ö. Kişi, Application of artificial intelligence to estimate daily pan evaporation using available and estimated climatic data in the Khozestan Province (South Western Iran). J. Irrig. Drain. Eng. 137(7), 412–425 (2011). doi:10.1061/(ASCE)IR.1943-4774.0000315

    Article  Google Scholar 

  11. S. Kim, H.S. Kim, Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling. J. Hydrol. 351(3–4), 299–317 (2008). doi:10.1016/j.jhydrol.2007.12.014

    Article  Google Scholar 

  12. H. Abghari, H. Ahmadi, S. Besharat, V. Rezaverdinejad, Prediction of daily pan evaporation using wavelet neural networks. Water Resour. Manag. 26(12), 3639–3652 (2012). doi:10.1007/s11269-012-0096-z

    Article  Google Scholar 

  13. V. Jothiprakash, S. Kirty, M.S. Tara, Prediction of meteorological variables using artificial neural networks. Int. J. Hydrol. Sci. Technol. 1(3/4), 192–206 (2011). doi:10.1504/IJHST.2011.043284

    Article  Google Scholar 

  14. K. Raza, V. Jothiprakash, Multi-output ANN model for prediction of seven meteorological parameters in a weather station. J. Inst. Eng. Ser. A 95, 221–229 (2014). doi:10.1007/s40030-014-0092-9

    Article  Google Scholar 

  15. A. Erdil, E. Arcaklioglu, The prediction of meteorological variables using artificial neural network. Neural Comput. Appl. 22(7–8), 1677–1683 (2012). doi:10.1007/s00521-012-1210-0

    Google Scholar 

  16. S.B.K. Tan, E.B. Shuy, L.H.C. Chua, Modelling hourly and daily open-water evaporation rates in areas with an equatorial climate. Hydrol. Process. 21(4), 486–499 (2007). doi:10.1002/hyp.6251

    Article  Google Scholar 

  17. J.R. Quinlan, Learning with continuous classes, in Machine Learning (World Scientific, Singapore, 1992), pp. 343–348

  18. D.P. Solomatine, A. Ostfeld, Data-driven modelling: some past experiences and new approaches. J. Hydroinform. 10(1), 3 (2008). doi:10.2166/hydro.2008.015

    Article  Google Scholar 

  19. D.P. Solomatine, K.N. Dulal, Model trees as an alternative to neural networks in rainfall—runoff modelling. Hydrol. Sci. J. 48(3), 399–411 (2003). doi:10.1623/hysj.48.3.399.45291

    Article  Google Scholar 

  20. V. Jothiprakash, A.S. Kote, Effect of pruning and smoothing while using M5 model tree technique for reservoir inflow prediction. J. Hydrol. Eng. 16(7), 563–574 (2011). doi:10.1061/(ASCE)HE.1943-5584.0000342

    Article  Google Scholar 

  21. M.A. Ghorbani, V.P. Singh, R. Daneshfaraz, M.H. Kashani, modelling pan evaporation using genetic programming. J. Stat. Adv. Theory Appl. 8(1), 15–36 (2012)

    Google Scholar 

  22. V. Jothiprakash, M.G. Devamane, K. Sasireka, Inter-comparison of temperature-based reference crop evapotranspiration methods. J. Inst. Eng. Agric. Eng. Div. 88(DECEMBER), 19–26 (2007)

    Google Scholar 

  23. V. Jothiprakash, M.G. Devamane, K. Sasireka, Inter-comparison of radiation based reference crop evapotranspiration methods. J. Inst. Eng. Agric. Eng. Div. 89(DECEMBER), 22–27 (2008)

    Google Scholar 

  24. R. Tadeusiewicz, Neural Networks: A Comprehensive Foundation, 2nd edn. (Prentice Hall PTR, Upper Saddle River, NJ, 1995). doi:10.1016/0967-0661(95)90080-2

    Google Scholar 

  25. J.P. Bigus, Data Mining With Neural Networks: Solving Business Problems from Application Development to Decision Support (McGraw-Hill Inc, Hightstown, NJ, 1996)

    Google Scholar 

  26. J.A. Freeman, D.M. Skapura, Neural Networks: Algorithms, Applications, and Programming Techniques (Addison Wesley Longman Publishing Co., Inc, Redwood City, CA, 1991)

    MATH  Google Scholar 

  27. I.H. Witten, E. Frank, Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations (The Morgan Kaufmann Series in Data Management Systems) (Morgan Kaufmann Publishers Inc., San Francisco, CA, 1999)

    Google Scholar 

  28. J.R. Koza, Genetic Programming—On the Programming of Computers by Means of Natural Selection (MIT Press, Cambridge, 1992)

    MATH  Google Scholar 

  29. V. Babovic, M. Keijzer, Genetic programming as a model induction engine. J. Hydroinform. 2(1), 35–60 (2000)

    Google Scholar 

  30. J.A. Foster, Review: Discipulus: A Commercial Genetic Programming System. Genet. Program Evolvable Mach. 2, 201–203 (2001). doi:10.1023/A:1011516717456

    Article  Google Scholar 

  31. S.M. Mousavi, A.H. Alavi, A.H. Gandomi, A. Mollahasani, Nonlinear genetic-based simulation of soil shear strength parameters. J. Earth Syst. Sci. 120(6), 1001–1022 (2011). doi:10.1007/s12040-011-0119-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Arunkumar.

Appendix

Appendix

figure a
figure b

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arunkumar, R., Jothiprakash, V. & Sharma, K. Artificial Intelligence Techniques for Predicting and Mapping Daily Pan Evaporation. J. Inst. Eng. India Ser. A 98, 219–231 (2017). https://doi.org/10.1007/s40030-017-0215-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40030-017-0215-1

Keywords