Skip to main content
Log in

Contribution of Bacterial Gut Symbionts to Digestion and Development in Podisus maculiventris (Hemiptera: Pentatomidae)

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

The spined soldier bug is a generalist predatory bug on many pest larvae across the world. The alimentary canal of this predator harbors facultative bacterial symbionts with unknown roles in the digestion and the development of their host. The present study deals with symbiotic roles in the production of digestive enzymes and development of Podisus maculiventris. Activities of general proteases and α-amylases of the midgut were assayed using the substrates hemoglobin and starch, respectively, in the antibiotic-treated and control insects. None of the aforementioned digestive enzymes were significantly suppressed in the absence of symbionts. Fecundity and adult longevity were influenced in antibiotic-treated adults. The total number of eggs/female and adult longevity in antibiotic-treated adults was lower and longer, respectively, than those of adults reared on the artificial or natural diet. However, suppression of bacteria resulted in no changes in pre-oviposition and oviposition periods, egg hatching, and adult weight. It seems that gut bacteria do not play a crucial role in digestive enzymes production. Nevertheless, they may be involved in the survival of the spined soldier bug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hirsch J, Reineke A (2014) Efficiency of commercial entomopathogenic fungal species against different members of the genus Otiorhynchus (Coleoptera: Curculionidae) under laboratory and semi-field conditions. J Plant Dis Protect 121(5):211–218. https://doi.org/10.1007/BF03356513

    Article  Google Scholar 

  2. Dillon RJ, Dillon VM (2004) The gut bacteria of insects: nonpathogenic interactions. Annu Rev Entomol 49:71–92. https://doi.org/10.1146/annurev.ento.49.061802.123416

    Article  CAS  PubMed  Google Scholar 

  3. Douglas AE (2014) The molecular basis of bacterial-insect symbiosis. J Mol Biol 426(23):3830–3837. https://doi.org/10.1016/j.jmb.2014.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kaufman MG, Klug MJ (1991) The contribution of hindgut bacteria to dietary carbohydrate utilization by crickets (Orthoptera, Gryllidae). Comp Biochem Physiol A 98:117–123. https://doi.org/10.1016/0300-9629(91)90588-4

    Article  Google Scholar 

  5. Santo Domingo JW, Kaufman MG, Klug MJ et al (1998) Influence of diet on the structure and function of the bacterial hindgut community of crickets. Mol Ecol 7:761–767. https://doi.org/10.1046/j.1365-294x.1998.00390.x

    Article  Google Scholar 

  6. Cruden DL, Markovetz AJ (1987) Microbial ecology of the cockroach gut. Annu Rev Microbiol 41:617–643. https://doi.org/10.1146/annurev.mi.41.100187.003153

    Article  CAS  PubMed  Google Scholar 

  7. Douglas AE (1998) Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu Rev Entomol 43:17–37. https://doi.org/10.1146/annurev.ento.43.1.17

    Article  CAS  PubMed  Google Scholar 

  8. Visôtto LE, Oliveira MGA, Guedes RNC et al (2009) Contribution of gut bacteria to digestion and development of the velvetbean caterpillar, Anticarsia gemmatalis. J Insect Physiol 55:185–191. https://doi.org/10.1016/j.jinsphys.2008.10.017

    Article  CAS  PubMed  Google Scholar 

  9. Kobayashi H, Kawasaki K, Takeishi K, Noda H (2011) Symbiont of the stink bug Plautia stali synthesizes rough-type lipopolysaccharide. Microbiol Res 167:48–54. https://doi.org/10.1016/j.micres.2011.03.001

    Article  CAS  PubMed  Google Scholar 

  10. Nikoh N, Hosokawa T, Oshima K et al (2011) Reductive evolution of bacterial genome in insect gut environment. Genome Biol Evol 3:702–714. https://doi.org/10.1093/gbe/evr064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Eichler S, Schaub GA (2002) Development of symbionts in triatomine bugs and the effects of infections with trypanosomatids. Exp Parasitol 100:17–27. https://doi.org/10.1006/expr.2001.4653

    Article  CAS  PubMed  Google Scholar 

  12. Genta FA, Dillon RJ, Terra WR, Ferreira C (2006) Potential role for gut microbiota in cell wall digestion and glucoside detoxification in Tenebrio molitor larvae. J Insect Physiol 52:593–601. https://doi.org/10.1016/j.jinsphys.2006.02.007

    Article  CAS  PubMed  Google Scholar 

  13. Fukatsu T, Hosokawa T (2002) Capsule-transmitted gut symbiotic bacterium of the Japanese common plataspid stinkbug, Megacopta punctatissima. Appl Environ Microbiol 68:389–396. https://doi.org/10.1128/AEM.68.1.389-396.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Prado SS, Rubinoff D, Almeida RPP (2006) Vertical transmission of a pentatomid caeca-associated symbiont. Ann Entomol Soc Am 99:577–585. https://doi.org/10.1603/0013-8746(2006)99[577:VTOAPC]2.0.CO;2

    Article  Google Scholar 

  15. Hirose E, Panizzi AR, Cattelan AJ (2006) Potential use of antibiotic to improve performance of laboratory-reared Nezara viridula (L.) (Heteroptera: Pentatomidae). Neotrop Entomol 35(2): 279–281. https://doi.org/10.1590/S1519-566X2006000200022

  16. Hosokawa T, Kikuchi Y, Fukatsu T (2007) How many symbionts are provided by mothers, acquired by offspring, and needed for successful vertical transmission in an obligate insect-bacterium mutualism? Mol Ecol 16:5316–5325. https://doi.org/10.1111/j.1365-294X.2007.03592.x

    Article  PubMed  Google Scholar 

  17. Kikuchi Y, Hosokawa T, Fukatsu T (2007) Insect-microbe mutualism without vertical transmission: a stinkbug acquires a beneficial gut symbiont from the environment every generation. Appl Environ Microbiol 73:4308–4316. https://doi.org/10.1128/AEM.00067-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Prado SS, Almeida RPP (2009) Role of symbiotic gut bacteria in the development of Acrosternum hilare and Murgantia histrionica. Ento Exper Appl 132:21–29. https://doi.org/10.1111/j.1570-7458.2009.00863.x

    Article  Google Scholar 

  19. Kaiwa N, Hosokawa T, Kikuchi Y et al (2010) Primary gut symbiont and secondary, Sodalis-allied symbiont of the Scutellerid stinkbug Cantao ocellatus. Appl Environ Microbiol 76(11):3486–3494. https://doi.org/10.1128/AEM.00421-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kikuchi Y, Hosokawa T, Nikoh N, Fukatsu T (2012) Gut symbiotic bacteria in the cabbage bugs Eurydema rugosa and Eurydema dominulus (Heteroptera: Pentatomidae). Appl Entomol Zool 47(1):1–8. https://doi.org/10.1007/s13355-011-0081-7

    Article  Google Scholar 

  21. Taylor CM, Coffey PL, DeLay BD, Dively GP (2014) The Importance of Gut Symbionts in the Development of the Brown Marmorated Stink Bug, Halyomorpha halys. PLoS One 9(3):e90312. https://doi.org/10.1371/journal.pone.0090312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Walsh BS, Heys C, Lewis Z (2017) Gut microbiota influences female choice and fecundity in the nuptial gift-giving species, Drosophila subobscura (Diptera: Drosophilidae). Eur J Entomol 114: 439–445. https://doi.org/10.14411/eje.2017.056

  23. Engel P, Moran NA (2013) The gut microbiota of insects – diversity in structure and function. FEMS Microbiol Rev 37:699–735. https://doi.org/10.1111/1574-6976.12025

    Article  CAS  PubMed  Google Scholar 

  24. Rosengaus RB, Zecher CN, Schultheis KF et al (2011) Disruption of the termite gut microbiota and its prolonged consequences for fitness. Appl Environ Microbiol 77(13):4303–4312. https://doi.org/10.1128/AEM.01886-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Torre-Bueno JR (1939) A symposium of the Heteroptera of America of North of Mexico. Entomol Am N.S 19: 141–310.

  26. De Clercq P (2000) Predaceous Stinkbugs (Pentatomidae: Asopinae). In: Schaefer CW, Panizzi AR (eds) Heteroptera of economic importance. CRC Press, Boca Raton, p 856

    Google Scholar 

  27. Ruberson JR, Tauber MJ, Tauber CA (1986) Plant feeding by Podisus maculiventris (Heteroptera: Pentatomidae): effect on survival, development and preoviposition period. Environ Entomol 15:894–897. https://doi.org/10.1093/ee/15.4.894

    Article  Google Scholar 

  28. Buchner P (1965) Endosymbiosis of animals with plant microorganisms. Interscience, New York

    Google Scholar 

  29. Abe Y, Mishiro L, Takanashi M (1995) Symbiont of the brown-winged green bug, Plautia stali Scott. Jpn J Appl Entomol Z 39(2):109–115. https://doi.org/10.1303/jjaez.39.109

    Article  Google Scholar 

  30. Lundgren JG, Lehman RM (2010) Bacterial Gut Symbionts Contribute to Seed Digestion in an Omnivorous Beetle. PLoS ONE 5(5):e10831. https://doi.org/10.1371/journal.pone.0010831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rooney AP, Courdon TA (2010) Bacterial community of the spined soldier bug gut in Proceedings of the 12th Workshop of the Arthropod Mass Rearing and Quality Control, 19 – 22 October 2010, Vienna International Centre, Vienna, Austria

  32. Mahdian K, Kerckhove J, Tirry L, De clercq P, (2006) Effects of diet on development and reproduction of the predatory pentatomids Picromerus bidens and Podisus maculiventris. BioCont 51:725–739. https://doi.org/10.1007/s10526-005-5253-3

    Article  Google Scholar 

  33. Cohen AC (1993) Organization of digestion and preliminary characterization of salivary trypsin-like enzymes in a predaceous heteropteran, Zelus renardii. J Insect Physiol 39:823–829. https://doi.org/10.1016/0022-1910(93)90114-7

    Article  CAS  Google Scholar 

  34. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  35. Bernfeld P (1955) Amylases, α and β. Meth Enzymol 1:149–158. https://doi.org/10.1016/0076-6879(55)01021-5

    Article  CAS  Google Scholar 

  36. Tam VH, Kabbara S, Vo G, Schilling AN, Coyle EA (2006) Comparative pharmacodynamics of gentamicin against Staphylococcus aureus and Pseudomonas aeruginosa. Antimicrob Agents Chemother 50(8):2626–2631. https://doi.org/10.1128/AAC.01165-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Berasategui A, Shukla S, Salem H, Kaltenpoth M (2016) Potential applications of insect symbionts in biotechnology. Appl Microbiol Biotechnol 100:1567–1577. https://doi.org/10.1007/s00253-015-7186-9

    Article  CAS  PubMed  Google Scholar 

  38. Gaio AO, Gusmão DS, Santos1 AV et al (2011) Contribution of midgut bacteria to blood digestion and egg production in Aedes aegypti (diptera: culicidae) (L.). Parasite Vector 4: 105. https://doi.org/10.1186/1756-3305-4-105

  39. Ahsaei SM, Tabadkani SM, Hosseininaveh V et al (2013) Differential accumulation of energy by the colour morphs of the pea aphid Acyrthosiphon pisum (Hemiptera: Aphididae) mirrors their ecological adaptations. Eur J Entomol 110(2): 241–245. https://doi.org/10.14411/eje.2013.035

  40. Tabadkani SM, Ahsaei SM, Hosseininaveh V, Nozari J (2013) Food stress prompts dispersal behavior in apterous pea aphids: Do activated aphidsincur energy loss?. Physiol Behav 110–111: 221–225. https://doi.org/https://doi.org/10.1016/j.physbeh.2012.12.004

  41. Attardo GM, Hansen IA, Raikhel AS (2005) Nutritional regulation of vitellogenesis in mosquitoes: Implications for anautogeny. Insect Biochem Mol Biol 35:661–675. https://doi.org/10.1016/j.ibmb.2005.02.013

    Article  CAS  PubMed  Google Scholar 

  42. Ridley EV, Wong AC, Westmiller S, Douglas AE (2012) Impact of the resident microbiota on the nutritional phenotype of Drosophila melanogaster. PLoS ONE 7(5):e36765. https://doi.org/10.1371/journal.pone.0036765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wong AC, Dobson AJ, Douglas AE (2014) Gut microbiota dictates the metabolic response of Drosophila to diet. J Exp Biol 217:1894–1901. https://doi.org/10.1242/jeb.101725

    Article  PubMed  PubMed Central  Google Scholar 

  44. Tada A, Kikuchi Y, Hosokawa T et al (2011) Obligate association with gut bacterial symbiont in Japanese populations of the southern green stinkbug Nezara viridula (Heteroptera: Pentatomidae). Appl Entomol Zool 46:483–488. https://doi.org/10.1007/s13355-011-0066-6

    Article  Google Scholar 

  45. Wilkinson T (1998) The elimination of intracellular microorganisms from insects: an analysis of antibiotic-treatment in the pea aphid Acyrthosiphon pisum. Comp Biochem Physiol 119:871–881. https://doi.org/10.1016/S1095-6433(98)00013-0

    Article  Google Scholar 

  46. Douglas AE, Minto LB, Wilkinson TL (2001) Quantifying nutrient production by the microbial symbionts in an aphid. J Exp Biol 204:349–358

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Tehran University. The first author is grateful to Seyed Jalal Ahsaei for providing antibiotics used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Mohammad Ahsaei.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest to publish this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Significance statement This study demonstrated that bacterial gut might have an important impact on some biological parameters of P. maculiventris, but does not seem to play a crucial role in the digestion of this predator.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahsaei, S.M., Hosseininaveh, V., Talaei-Hassanloui, R. et al. Contribution of Bacterial Gut Symbionts to Digestion and Development in Podisus maculiventris (Hemiptera: Pentatomidae). Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 90, 959–967 (2020). https://doi.org/10.1007/s40011-020-01165-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-020-01165-3

Keywords

Navigation