Skip to main content

Advertisement

Log in

Quantification and Characterization of Mannan Oligosaccharide Producing Yeasts isolated from Various Food Products

  • Original Paper
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

In the present investigation, an attempt has been made to screen and identify the isolates of yeast rich in mannan oligosaccharide (MOS) from different food sources collected from local market of Mumbai, India. Out of the forty-eight varied yeast strains obtained using selective and growth media, eighteen isolates were shortlisted on the basis of their MOS yield. The MOS yield obtained from Wickerhamomyces anomalus strain isolated from home-made dahi was even higher (33%) than that obtained from the traditionally used Saccharomyces cerevisiae strain (590.52 ± 8.25 vs 442.85 ± 4.25 mg/L). The reasonably good yield was found in Pichia casonil from grape juice (354.70 ± 1.02 mg/L) and Candida glabrata strain from carrot juice (350.8 ± 2.52 mg/L); however, the lowest yield was of Debaryomyces hansenii SZ10 (73.5 mg/L) grown on yogurt. Identification of the isolates was undertaken using Biomérieux VITEK® 2 system and molecular fingerprinting by polymerase chain reaction-random amplified polymorphism DNA (PCR-RAPD) using microsatellite M13 primer and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) of amplified 18S intergenic transcribed spacer region of ribosomal DNA (rDNA) after subjecting it to digest with three restriction endonucleases i.e. HaeIII, MspI and HinfI. Based on the better yield, it was concluded that W. anomalus can be exploited as an alternative of S. cerevisiae yeast stains for commercial mass scale MOS production for human food and animal feed industries in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Transparency Market Research (2016) Global nutraceuticals market to reach US$278.96 bn by 2021 owing to increasing demand for nutritional diet. http://www.transparencymarketresearch.com/pressrelease/global-nutraceuticals-product-market.htm

  2. Hays VW (1981) The Hays report: effectiveness of feed additive usage of antibacterial agents in swine and poultry production. Office of Technology Assessment, US Congress, Washington DC, and Rachelle Laboratories, Inc., Long Beach, CA

  3. Kumar R, Mukherjee SC, Ranjan R, Nayak SK (2008) Enhanced innate immune parameters in Labeo rohita (Ham.) following oral administration of Bacillus subtilis. Fish Shellfish Immunol 24:168–172

    Article  PubMed  CAS  Google Scholar 

  4. Mirzapour-Rezaee SS, Farhangi M, Rafiee G (2016) Combined effects of dietary mannan- and fructo-oligosaccharide on growth indices, body composition, intestinal bacterial flora and digestive enzymes activity of regal peacock (Aulonocara stuartgranti). Aquac Nutr. doi:10.1111/anu.12430

    Article  Google Scholar 

  5. Pourabedin M, Yang M, Zhao X (2017) Mannan- and xylooligosaccharides modulate caecal microbiota and expression of inflammatory-related cytokines and reduce caecal Salmonella Enteritidis colonisation in young chickens. FEMS Microbiol Ecol. doi:10.1093/femsec/fiw226

    Article  PubMed  Google Scholar 

  6. Badia R, Zanello G, Chevaleyre C, Lizardo R, Meurens F, Martínez F, Brufau J, Salmon H (2012) Effect of Saccharomyces cerevisiae var. Boulardii and β-galactomannan oligosaccharide on porcine intestinal epithelial and dendritic cells challenged in vitro with Escherichia coli F4 (K88). Vet Res 43:4–14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Padzorski RP, Gray GR, Nelson RD (1990) Different effects of native Candida albicans and mannan derived oligosaccharides on antigen-stimulated lymphoproliferation in vitro. J Immunol 144:707–716

    Google Scholar 

  8. Moran CA (2004) Functional components of the cell wall of Sacchromyces cerevisiae: applications for yeast glucan and mannan. In: Lyons TP, Jacques KA (eds) Nutritional biotechnology in the feed and food industries. Nottingham University Press, Nottingham, pp 283–296

    Google Scholar 

  9. Jones GH, Ballou CE (1969) Studies on the structure of yeast mannan. J Biol Chem 244:1043–1051

    PubMed  CAS  Google Scholar 

  10. Kocourek J, Ballou CE (1969) Method for fingerprinting yeast cell mannans. J Bacteriol 100:1175–1181

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Giovani G, Rosi I, Bertuccioli I (2012) Quantification and characterization of cell wall polysaccharides released by non-Saccharomyces yeast strains during alcohol fermentation. Int J Food Microbiol 160:113–118

    Article  PubMed  CAS  Google Scholar 

  12. Kurtzman CP, Fell JW (2006) Yeast systematics and phylogeny—implications of molecular identification methods for studies in ecology. Biodiversity and ecophysiology of yeasts, the yeast handbook. Springer, Berlin

    Google Scholar 

  13. Kurtzman CP, Piškur J (2006) Taxonomy and phylogenetic diversity among the yeasts. In: Sunnerhagen P, Piskur J (eds) Comparative genomics: using fungi as models. Springer, Berlin, pp 29–44

    Chapter  Google Scholar 

  14. Hoffman CS, Wood V, Fantes PA (2015) An ancient yeast for young geneticists: a primer on the Schizosaccharomyces pombe. Model Syst Genet 201:403–423

    CAS  Google Scholar 

  15. Legras JL, Merdinoglu D, Cornuet JM, Karst F (2007) Bread, beer and wine: Saccharomyces cerevisiae diversity reflects human history. Mol Ecol 16(10):2091–2102

    Article  PubMed  CAS  Google Scholar 

  16. Barnett JA (2003) Beginnings of microbiology and biochemistry: the contribution of yeast research. Microbiol (Reading, Engl) 149(3):557–567

    Article  CAS  Google Scholar 

  17. Vasdinyei R, Deak T (2003) Characterization of yeast isolates originating from Hungarian dairy products using traditional and molecular identification techniques. Int J Food Microbiol 86:123–130

    Article  PubMed  CAS  Google Scholar 

  18. Tornai-Lehoczki J, Dlauchy D (2000) Elimination of brewing yeast strains using different molecular techniques. Int J Food Microbiol 62:37–45

    Article  PubMed  CAS  Google Scholar 

  19. Schuller D, Valero E, Dequin S, Casal M (2004) Survey of molecular methods for typing wine yeast strains. FEMS Microbiol Lett 231:19–26

    Article  PubMed  CAS  Google Scholar 

  20. Senses-Ergul S, Agoston R, Belak A, Deak T (2006) Characterization of some yeast isolates from foods by traditional and molecular tests. Int J Food Microbiol 108:120–124

    Article  PubMed  CAS  Google Scholar 

  21. Peat S, Whelan WJ, Edwards TE (1961) Polysaccharides of baker’s yeast. Part IV. Mannan. J Chem Soc 1:29–34

    Article  Google Scholar 

  22. Nakajima T, Ballou CE (1974) Characterization of the carbohydrate fragments obtained from Saccharomyces cerevisiae mannan by alkaline degradation. J Biol Chem 249:7679–7684

    PubMed  CAS  Google Scholar 

  23. Dubois M, Gill KA, Hamilton JK, Rebers PA, Smith F (1958) Colorimetric method for determination of sugar and related substances. J Anal Chem 28:350–356

    Article  Google Scholar 

  24. Hoffman CS, Winston F (1987) A ten-minute DNA preparation from yeast efficiently released autonomous plasmids for transformation of Escherichia coli. Gene 57:267–272

    Article  PubMed  CAS  Google Scholar 

  25. Huey B, Hall J (1989) Hypervariable DNA fingerprinting in Escherichia coli Minisatellite probe from bacteriophage M13. J Bacteriol 171:2528–2532

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. James SA, Collins MD, Roberts IN (1994) Genetic interrelationship among species of the genus Zygosaccharomyces as revealed by small subunit rRNA gene sequences. Yeast 10:871–881

    Article  PubMed  CAS  Google Scholar 

  27. Nunez F, Rodríguez MM, Córdoba JJ, Bermúdez ME, Asensio MA (1996) Yeast population during ripening of dry-cured Iberian ham. Int J Food Microbiol 29:271–280

    Article  PubMed  CAS  Google Scholar 

  28. Sonia GB, Gowda T, Ramu G (2016) A modified method for extraction and deproteinization of mannan oligosaccharides. World J Pharm Sci 4:52–54

    CAS  Google Scholar 

  29. Agarwal S, Manchanda V, Verma V (2011) Yeast identification in routine clinical microbiology laboratory and its clinical relevance. Indian J Med Microbiol 29:172–177

    Article  PubMed  CAS  Google Scholar 

  30. Fenn JP, Segal H, Barland B (1994) Comparison of updated Vitak yeast biochemical card and ALI 20C yeast identification system. J Clin Micriobiol 32:1184–1187

    CAS  Google Scholar 

  31. Zhang L, Xiao M, Wang H, Gao R, Fan X, Brown M, Gray TJ, Kong F, Xu FC (2014) Yeast identification algorithm based on use of the Vitek MS system selectively supplemented with ribosomal DNA sequencing: proposal of a reference assay for Invasive Fungal Surveillance Programs in China. J Clin Microbiol 52:572–577

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Loureiro V, Querol A (1999) The prevalence and control of spoilage yeasts in foods and beverages. Trends Food Sci Technol 10:356–365

    Article  CAS  Google Scholar 

  33. Capece A, Salzano G, Romano P (2003) Molecular typing techniques as a tool to differentiate non-Saccharomyces wine species. Int J Food Microbiol 84:33–39

    Article  PubMed  CAS  Google Scholar 

  34. Andrade MJ, Redriguez M, Sanchez B, Aranda E, Cordoba JJ (2006) DNA typing methods for differentiation of years related to dry-cured meat products. Int J Food Microbiol 107:48–58

    Article  PubMed  CAS  Google Scholar 

  35. McCullough MJ, Clemons KV, McCusker JH, Stevens DA (1998) Intergenic transcribed spacer PCR ribotyping for differentiation of Saccharomyces species and its specific hybrids. J Clin Microbiol 36:1035–1038

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Mozina SS, Dlauchy D, Deak T, Respor D (1997) Identification of Saccharomyces sensustricto and Torulaspora yeasts by PCR ribotyping. Lett Appl Microbiol 24:311–315

    Article  CAS  Google Scholar 

  37. Andrighetto R, Psomas E, Tzanetakis N, Suzzi G, Lombardi A (2000) Randomly amplified polymorphic DNA (RAPD) PCR for the identification of yeast isolated from dairy products. Lett Appl Microbiol 30:5–9

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Gopal Krishna, Director/Vice-Chancellor, ICAR-Central Institute of Fisheries Education, Mumbai, India for providing support and necessary facilities for carrying out this experiment. S.G. is thankful to Dr. K.N. Ghorude, Principal, Vartak College, Vasai West, Dist Phalghar, India for granting kind permission to pursue degree under in-service Ph.D. program of Mumbai University, Mumbai, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shobha Gupta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Bhathena, Z.P., Kumar, S. et al. Quantification and Characterization of Mannan Oligosaccharide Producing Yeasts isolated from Various Food Products. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 88, 1237–1247 (2018). https://doi.org/10.1007/s40011-017-0859-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-017-0859-7

Keywords

Navigation