Skip to main content
Log in

A Temporal Study on the Effects of TiO2 Nanoparticles in a Fresh Water Microcosm

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

This study assesses the temporal changes in the physico-chemical behaviour of titanium dioxide nanoparticles (anatase and rutile phase) for a period of 120 h at environmentally relevant concentration of 1,000 µg/L, and the consequent impact on the microalgae population in a fresh water microcosm. The mean hydrodynamic size analysis in the medium revealed the differences in the aggregation behaviour of the two crystalline types of particles within first 12 h exposure before they had reached the micron size range. While the short term exposure (120 h) showed an immediate effect on the resident microalgae in the microcosm with respect to control, there were no significant differences in ecotoxicity effects of rutile and anatase phases of titania. The long term (90 days) exposure demonstrated a gradual recovery of the resident algal population. Summarizing the observations, the nanosized particles at low concentration may not retain the toxic potential for longer exposure time in a microcosm presumably owing to the complexity prevalent in the natural systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cherchi C, April ZG (2010) Impact of titanium dioxide nanomaterials on nitrogen fixation rate and intracellular nitrogen storage in Anabaena variabilis. Environ Sci Technol 44:8302–8307

    Article  CAS  PubMed  Google Scholar 

  2. Kiser MA, Westerhoff P, Benn T, Wang Y, Perez-Rivera J, Hristovski K (2009) Titanium nanomaterial removal and release from wastewater treatment plants. Environ Sci Technol 43:6757–6763

    Article  CAS  PubMed  Google Scholar 

  3. O’Brien N, Cummins E (2010) Ranking initial environmental and human health risk resulting from environmentally relevant nanomaterials. J Environ Sci Health Part A 45:992

    Article  Google Scholar 

  4. Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43:9216–9222

    Article  CAS  PubMed  Google Scholar 

  5. Titaniumart (2010) Photocatalysis applications of titanium dioxide TiO2. Retrieved 29 Apr from http://www.titaniumart.com/photocatalysis-ti02.html

  6. Lowry GV, Espinasse BP, Badireddy AR, Richardson CJ, Reinsch BC, Bryant LD, Bone AJ, Deonarine A, Chae S, Therezien M, Colman BP, Hsu-Kim H, Bernhardt ES, Matson CW, Wiesner MR (2012) Long-term transformation and fate of manufactured ag nanoparticles in a simulated large scale freshwater emergent wetland. Environ Sci Technol 46(13):7027–7036

    Article  CAS  PubMed  Google Scholar 

  7. Buffet PE, Fossi-Tankoua O, Pan JF, Berhanu D, Herrenknecht C, Poirier L, Amiard-Triquet C, Amiard JC, Berard JB, Risso C, Guibbolini M, Rome M, Reip P, Valsami-Jones E, Mouneyrac C (2011) Behavioral and biochemical responses of two marine invertebrates Scrobicularia plana and Hediste diversicolor to copper oxide nanoparticles. Chemosphere 84:166–174

    Article  CAS  PubMed  Google Scholar 

  8. Pakrashi S, Dalai S, Sneha B, Chandrasekaran N, Mukherjee A (2012) A temporal study on fate of Al2O3 nanoparticles in a fresh water microcosm at environmentally relevant low concentrations. Ecotoxico Environ Safety 84:70–77

    Article  CAS  Google Scholar 

  9. Dalai S, Pakrashi S, Nirmala MJ, Chaudhri A, Chandrasekaran N, Mandal AB, Mukherjee A (2013) Cytotoxicity of TiO2 nanoparticles and their detoxification in a freshwater system. Aquat Toxicol 138:1–11

    Article  PubMed  Google Scholar 

  10. Tso C, Zhung C, Shih Y, Tseng YM, Wu S, Doong R (2010) Stability of metal oxide nanoparticles in aqueous solutions. Water Sci Technol 61(1):127–133

    Article  CAS  PubMed  Google Scholar 

  11. Zhou D, Ji Z, Jiang X, Dunphy DR, Brinker J, Keller AA (2013) Influence of material properties on TiO2 nanoparticle agglomeration. PLoS One 8(11):e81239

    Article  PubMed  PubMed Central  Google Scholar 

  12. Miao N, Zhang XN, Zhiping L, Chi-shuo C, Wei-chun C, Peter H, Quigg A (2010) Zinc oxide-engineered nanoparticles: dissolution and toxicity to marine phytoplankton. Environ Toxicol Chem 29(12):2814–2822

    Article  CAS  PubMed  Google Scholar 

  13. Jiang J, Oberdörster G, Biswas P (2009) Characterization of size, surface charge agglomeration state of nanoparticle dispersion for toxicological studies. J Nanopart Res 11:77–89

    Article  CAS  Google Scholar 

  14. Sadiq M, Pakrashi S, Chandrasekaran N, Mukherjee A (2011) Studies on toxicity of aluminum oxide (Al2O3) nanoparticles to microalgae species: Scenedesmus sp. and Chlorella sp. J Nanopart Res 13:3287–3299

    Article  CAS  Google Scholar 

  15. Dalai S, Iswarya V, Bhuvaneswari M, Pakrashi S, Chandrasekaran N, Mukherjee A (2014) Different modes of TiO2 uptake by Ceriodaphnia dubia: relevance to toxicity and bioaccumulation. Aquat Toxicol 152:139–146

    Article  CAS  PubMed  Google Scholar 

  16. Soldo D, Hari R, Sigg L, Behra R (2005) Tolerance of Oocystis nephrocytioides to copper: intracellular distribution and extracellular complexation of copper. Aquat Toxicol 71(4):307–317

    Article  CAS  PubMed  Google Scholar 

  17. Miao AJ, Schwehr KA, Xu C, Zhang SJ, Luo Z, Quigg A, Santschi PH (2009) The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances. Environ Pollut 157(11):3034–3041

    Article  CAS  PubMed  Google Scholar 

  18. Benabbou AK, Derriche Z, Felix C, Lejeune P, Guillard C (2007) Photocatalytic inactivation of Escherischia coli: effect of concentration of TiO2 and microorganism, nature, and intensity of UV irradiation. Appl Catal 76(3–4):257–263

    Article  CAS  Google Scholar 

  19. Liu HL, Yang TCK (2003) Photocatalytic inactivation of Escherichia coli and Lactobacillus helveticus by ZnO and TiO2 activated with ultraviolet light. Process Biochem 39(4):475–481

    Article  CAS  Google Scholar 

  20. Clément L, Hurel C, Marmier N (2013) Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants—effects of size and crystalline structure. Chemosphere 90(3):1083–1090

    Article  PubMed  Google Scholar 

  21. Stolle LKB, Schaeublin NM, Murdock RC, Jiang J, Biswas P, Schlager JJ, Hussain SM (2009) Crystal structure mediates mode of cell death in TiO2 nanotoxicity. J Nanopart Res 11:1361–1374

    Article  Google Scholar 

  22. Jin C, Tang Y, Guang F, Yang X, Lin L, Xu S, Yan X, Fan Y, Huang Y, Yang YJ (2011) Cellular toxicity of TiO2 nanoparticles in anatase and rutile crystal phase. Biol Trace Elem Res 141:3–15

    Article  CAS  PubMed  Google Scholar 

  23. Dalai S, Pakrashi S, Chandrasekaran N, Mukherjee A (2013) Acute toxicity of TiO2 nanoparticles to Ceriodaphnia dubia under visible light and dark conditions in a freshwater system. PLoS One 8(4):1–11

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Sophisticated Analytical Instrumentation Facility (SAIF), Department of Science and Technology (DST) at Indian Institute of Technology, Madras for SEM analysis and Life Science Research Board-DRDO, Govt of India, for financial support. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amitava Mukherjee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4784 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, D., Rajeshwari, A., Roy, R. et al. A Temporal Study on the Effects of TiO2 Nanoparticles in a Fresh Water Microcosm. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 86, 415–420 (2016). https://doi.org/10.1007/s40011-014-0462-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-014-0462-0

Keywords

Navigation