Skip to main content

Advertisement

Log in

Recent studies on modulating hyaluronic acid-based hydrogels for controlled drug delivery

  • Review
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

Background

Diverse hydrogel formulations have been investigated for topical and subcutaneous drug delivery. Among the various biopolymers used for hydrogel formulations, hyaluronic acid (HA) has been widely applied due to its nontoxicity, excellent biocompatibility and rheological properties. However, formulations of HA-based hydrogel drug delivery system have several challenges to overcome, including their initial burst drug release and lack of mechanical strength. Thus, diverse strategies have been investigated to control the drug release from HA-based hydrogels.

Area covered

This review introduces recent strategies to modulate HA-based hydrogels for the control of drug release profiles. Recent approaches that will be covered in this review include, (1) both chemical and non-covalent cross-linking methods to modulate the physical properties of hydrogels, (2) ionic cross-lining and host–guest interaction-based hydrogels, and (3) incorporation of amorphous microprecipitated bulk drug powder and drug-encapsulated nano/microparticles in hydrogel networks. These new techniques are being intensively studied to decrease burst release and to sustain the release of drugs.

Expert opinion

HA-based hydrogel formulations are useful platforms in various biomedical areas, including controlled drug delivery, tissue engineering and cosmetic fillers. Various physical and chemical strategies are being studied to overcome their limitations and enhance the versatility of clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

reproduced with permission from publisher (Li et al. 2016)

Fig. 3
Fig. 4
Fig. 5

reproduced with permission from publisher (Lee et al. 2020b)

Fig. 6

reproduced with permission from publisher (Liu et al. 2018)

Similar content being viewed by others

References

  • Al-Sibani M, Al-Harrasi A, Neubert RHH (2016) Study of the effect of mixing approach on cross-linking efficiency of hyaluronic acid-based hydrogel cross-linked with 1,4-butanediol diglycidyl ether. Eur J Pharm Sci 91:131–137

    Article  CAS  PubMed  Google Scholar 

  • Allemann IB, Baumann L (2008) Hyaluronic acid gel (Juvederm (TM)) preparations in the treatment of facial wrinkles and folds. Clin Interv Aging 3:629–634

    Article  CAS  PubMed Central  Google Scholar 

  • Amorim S, Reis CA, Reis RL, Pires RA (2021) Extracellular matrix mimics using hyaluronan-based biomaterials. Trends Biotechnol 39:90–104

    Article  CAS  PubMed  Google Scholar 

  • An S, Choi S, Min S, Cho SW (2021) Hyaluronic Acid-based Biomimetic Hydrogels for Tissue Engineering and Medical Applications. Biotechnol Bioproc E 26:503–516

    Article  CAS  Google Scholar 

  • Antoniuk I, Amiel C (2016) Cyclodextrin-mediated hierarchical self-assembly and its potential in drug delivery applications. J Pharm Sci 105:2570–2588

    Article  CAS  PubMed  Google Scholar 

  • Aruldass S, Mathivanan V, Mohamed AR, Tye CT (2019) Factors affecting hydrolysis of polyvinyl acetate to polyvinyl alcohol. J Environ Chem Eng 7:103238

    Article  CAS  Google Scholar 

  • Aviv M, Halperin-Sternfeld M, Grigoriants I, Buzhansky L, Mironi-Harpaz I, Seliktar D, Einav S, Nevo Z, Adler-Abramovich L (2018) Improving the mechanical rigidity of hyaluronic acid by integration of a supramolecular peptide matrix. ACS Appl Mater Interfaces 10:41883–41891

    Article  CAS  PubMed  Google Scholar 

  • Bae JW, Choi JH, Lee Y, Park KD (2015) Horseradish peroxidase-catalysed in situ-forming hydrogels for tissue-engineering applications. J Tissue Eng Regen M 9:1225–1232

    Article  CAS  Google Scholar 

  • Bannuru RR, Natov NS, Obadan IE, Price LL, Schmid CH, Mcalindon TE (2009) Therapeutic trajectory of hyaluronic acid versus corticosteroids in the treatment of knee osteoarthritis: a systematic review and meta-analysis. Arthritis Rheum 61:1704–1711

    Article  CAS  PubMed  Google Scholar 

  • Bertz A, Wohl-Bruhn S, Miethe S, Tiersch B, Koetz J, Hust M, Bunjes H, Menzel H (2013) Encapsulation of proteins in hydrogel carrier systems for controlled drug delivery: Influence of network structure and drug size on release rate. J Biotechnol 163:243–249

    Article  CAS  PubMed  Google Scholar 

  • Burdick JA, Prestwich GD (2011) Hyaluronic Acid Hydrogels for Biomedical Applications. Adv Mater 23:H41–H56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen JX, Cao LJ, Shi Y, Wang P, Chen JH (2016a) In situ supramolecular hydrogel based on hyaluronic acid and dextran derivatives as cell scaffold. J Biomed Mater Res, Part A 104:2263–2270

    Article  CAS  Google Scholar 

  • Chen X, Liu ZN, Parker SG, Zhang XJ, Gooding JJ, Ru YY, Liu YH, Zhou YS (2016b) Light-Induced Hydrogel Based on Tumor-Targeting Mesoporous Silica Nanoparticles as a Theranostic Platform for Sustained Cancer Treatment. ACS Appl Mater Interfaces 8:15857–15863

    Article  CAS  PubMed  Google Scholar 

  • Cho HJ (2020) Recent progresses in the development of hyaluronic acid-based nanosystems for tumor-targeted drug delivery and cancer imaging. J Pharm Investig 50:115–129

    Article  CAS  Google Scholar 

  • Chung CW, Kang JY, Yoon IS, Hwang HD, Balakrishnan P, Cho HJ, Chung KD, Kang DH, Kim DD (2011) Interpenetrating polymer network (IPN) scaffolds of sodium hyaluronate and sodium alginate for chondrocyte culture. Colloid Surface B 88:711–716

    Article  CAS  Google Scholar 

  • Dahlmann J, Krause A, Moller L, Kensah G, Mowes M, Diekmann A, Martin U, Kirschning A, Gruh I, Drager G (2013) Fully defined in situ cross-linkable alginate and hyaluronic acid hydrogels for myocardial tissue engineering. Biomaterials 34:940–951

    Article  CAS  PubMed  Google Scholar 

  • De Boulle K, Glogau R, Kono T, Nathan M, Tezel A, Roca-Martinez JX, Paliwal S, Stroumpoulis D (2013) A Review of the Metabolism of 1,4-Butanediol Diglycidyl Ether-Crosslinked Hyaluronic Acid Dermal Fillers. Dermatol Surg 39:1758–1766

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng Y, Ren J, Chen G, Li G, Wu X, Wang G, Gu G, Li J (2017) Injectable in situ cross-linking chitosan-hyaluronic acid based hydrogels for abdominal tissue regeneration. Sci Rep 7:2699

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng Y, Shavandi A, Okoro OV, Nie L (2021) Alginate modification via click chemistry for biomedical applications. Carbohyd Polym 270:118360

    Article  CAS  Google Scholar 

  • Di Donato C, Iacovino R, Isernia C, Malgieri G, Varela-Garcia A, Concheiro A, Alvarez-Lorenzo C (2020) Polypseudorotaxanes of Pluronic® F127 with Combinations of α-and β-cyclodextrins for topical formulation of acyclovir. Nanomaterials 10:613

    Article  PubMed Central  Google Scholar 

  • Domiński A, Konieczny T, Kurcok P (2019) α-Cyclodextrin-based polypseudorotaxane hydrogels. Materials 13:133

    Article  PubMed Central  Google Scholar 

  • Dovedytis M, Liu ZJ, Bartlett S (2020) Hyaluronic acid and its biomedical applications: A review. Engineered Regeneration 1:102–113

    Article  Google Scholar 

  • El-Aassar M, El Fawal G, Kamoun EA, Fouda MM (2015) Controlled drug release from cross-linked κ-carrageenan/hyaluronic acid membranes. Int J Biol Macromol 77:322–329

    Article  CAS  PubMed  Google Scholar 

  • Ellenberger DJ, Miller DA, Kucera SU, Williams RO (2018) Improved vemurafenib dissolution and pharmacokinetics as an amorphous solid dispersion produced by KinetiSol® processing. AAPS PharmSciTech 19:1957–1970

    Article  CAS  PubMed  Google Scholar 

  • Faivre J, Pigweh AI, Iehl J, Maffert P, Goekjian P, Bourdon F (2021) Crosslinking hyaluronic acid soft-tissue fillers: current status and perspectives from an industrial point of view. Expert Rev Med Devices 18:1175–1187

    Article  CAS  PubMed  Google Scholar 

  • Fang G, Yang X, Chen S, Wang Q, Zhang A, Tang B (2022) Cyclodextrin-based host–guest supramolecular hydrogels for local drug delivery. Coord Chem Rev 454:214352

    Article  CAS  Google Scholar 

  • Fiorica C, Palumbo FS, Pitarresi G, Puleio R, Condorelli L, Collura G, Giammona G (2020) A hyaluronic acid/cyclodextrin based injectable hydrogel for local doxorubicin delivery to solid tumors. Int J Pharmaceut 589:119879

    Article  CAS  Google Scholar 

  • Fraser JR, Laurent TC, Engstrom-Laurent A, Laurent UG (1984) Elimination of hyaluronic acid from the blood stream in the human. Clin Exp Pharmacol Physiol 11:17–25

    Article  CAS  PubMed  Google Scholar 

  • Furth G, Knierim R, Buss V, Mayer C (2008) Binding of bivalent cations by hyaluronate in aqueous solution. Int J Biol Macromol 42:33–40

    Article  CAS  PubMed  Google Scholar 

  • Gantumur E, Sakai S, Nakahata M, Taya M (2019) Horseradish peroxidase-catalyzed hydrogelation consuming enzyme-produced hydrogen peroxide in the presence of reducing sugars. Soft Matter 15:2163–2169

    Article  CAS  PubMed  Google Scholar 

  • Garnica-Palafox IM, Sanchez-Arevalo FM (2016) Influence of natural and synthetic crosslinking reagents on the structural and mechanical properties of chitosan-based hybrid hydrogels. Carbohyd Polym 151:1073–1081

    Article  CAS  Google Scholar 

  • Gramlich WM, Kim IL, Burdick JA (2013) Synthesis and orthogonal photopatterning of hyaluronic acid hydrogels with thiol-norbornene chemistry. Biomaterials 34:9803–9811

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Wei C, Wang X, Hou Y, Guo W (2021) An in situ mechanical adjustable double crosslinking hyaluronic acid/poly-lysine hydrogel matrix: Fabrication, characterization and cell morphology. Int J Biol Macromol 180:234–241

    Article  CAS  PubMed  Google Scholar 

  • Guo W, Douma L, Hu MH et al (2022) Hyaluronic acid-based interpenetrating network hydrogel as a cell carrier for nucleus pulposus repair. Carbohyd Polym 277:118828

    Article  CAS  Google Scholar 

  • Guo Z, Ni K, Wei D, Ren Y (2015) Fe 3+-induced oxidation and coordination cross-linking in catechol–chitosan hydrogels under acidic pH conditions. Rsc Adv 5:37377–37384

    Article  CAS  Google Scholar 

  • He Y, Hou ZM, Wang JN, Wang ZW, Li XY, Liu JL, Liang Q, Zhao JL (2020) Assessment of biological properties of recombinant collagen-hyaluronic acid composite scaffolds. Int J Biol Macromol 149:1275–1284

    Article  CAS  PubMed  Google Scholar 

  • Hu QD, Tang GP, Chu PK (2014) Cyclodextrin-based host-guest supramolecular nanoparticles for delivery: from design to applications. Accounts Chem Res 47:2017–2025

    Article  CAS  Google Scholar 

  • Huang JJ, Ren JA, Chen GP, Li ZA, Liu Y, Wang GF, Wu XW (2018) Tunable sequential drug delivery system based on chitosan/hyaluronic acid hydrogels and PLGA microspheres for management of non-healing infected wounds. Mat Sci Eng C-Mater 89:213–222

    Article  CAS  Google Scholar 

  • Hwang C, Lee SY, Kim H-J et al (2021) Polypseudorotaxane and polydopamine linkage-based hyaluronic acid hydrogel network with a single syringe injection for sustained drug delivery. Carbohyd Polym 266:118104

    Article  CAS  Google Scholar 

  • Ito T, Fraser IP, Yeo Y, Highley CB, Bellas E, Kohane DS (2007) Anti-inflammatory function of an in situ cross-linkable conjugate hydrogel of hyaluronic acid and dexamethasone. Biomaterials 28:1778–1786

    Article  CAS  PubMed  Google Scholar 

  • Jeon O, Song SJ, Lee K-J, Park MH, Lee S-H, Hahn SK, Kim S, Kim B-S (2007) Mechanical properties and degradation behaviors of hyaluronic acid hydrogels cross-linked at various cross-linking densities. Carbohyd Polym 70:251–257

    Article  CAS  Google Scholar 

  • Jha AK, Hule RA, Jiao T, Teller SS, Clifton RJ, Duncan RL, Pochan DJ, Jia XQ (2009) Structural analysis and mechanical characterization of hyaluronic acid-based doubly cross-linked networks. Macromolecules 42:537–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin Y-J, Ubonvan T, Kim D-D (2010) Hyaluronic acid in drug delivery systems. J Pharm Investig 40:33–43

    Article  Google Scholar 

  • Kang NW, Yoon SY, Kim S, Yu NY, Park JH, Lee JY, Cho HJ, Kim DD (2021) Subcutaneously injectable hyaluronic acid hydrogel for sustained release of donepezil with reduced initial burst release: effect of hybridization of microstructured lipid carriers and albumin. Pharmaceutics 13:864

    Article  PubMed  PubMed Central  Google Scholar 

  • Khunmanee S, Jeong Y, Park H (2017) Crosslinking method of hyaluronic-based hydrogel for biomedical applications. J Tissue Eng 8:2014

    Article  Google Scholar 

  • Kim K, Park S, Yang J-A, Jeon J-H, Bhang S, Kim B-S, Hahn S (2011) Injectable hyaluronic acid–tyramine hydrogels for the treatment of rheumatoid arthritis. Acta Biomater 7:666–674

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Kim K, Kim BS, An YH, Lee UJ, Lee SH, Kim SL, Kim BG, Hwang NS (2020a) Fabrication of polyphenol-incorporated anti-inflammatory hydrogel via high-affinity enzymatic crosslinking for wet tissue adhesion. Biomaterials 242

  • Kim YC, Min KA, Jang DJ, Ahn TY, Min JH, Yu BE, Cho KH (2020b) Practical approaches on the long-acting injections. J Pharm Investig 50:147–157

    Article  CAS  Google Scholar 

  • Kim J, Lee C, Ryu JH (2021a) Adhesive catechol-conjugated hyaluronic acid for biomedical applications: a mini review. Appl Sci 11:21

    Article  Google Scholar 

  • Kim MH, Park JH, Nguyen DT, Kim S, Jeong D, Cho HJ, Kim DD (2021b) Hyaluronidase inhibitor-incorporated cross-linked hyaluronic acid hydrogels for subcutaneous injection. Pharmaceutics 13:170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Han SS (2017) PVA-based hydrogels for tissue engineering: A review. Int J Polym Mater Po 66:159–182

    Article  CAS  Google Scholar 

  • Kwon MY, Wang C, Galarraga JH, Pure E, Han L, Burdick JA (2019) Influence of hyaluronic acid modification on CD44 binding towards the design of hydrogel biomaterials. Biomaterials 222:1194

    Article  Google Scholar 

  • Lam J, Truong NF, Segura T (2014) Design of cell-matrix interactions in hyaluronic acid hydrogel scaffolds. Acta Biomater 10:1571–1580

    Article  CAS  PubMed  Google Scholar 

  • Lee EJ, Kang E, Kang S-W, Huh KM (2020a) Thermo-irreversible glycol chitosan/hyaluronic acid blend hydrogel for injectable tissue engineering. Carbohyd Polym 244:116432

    Article  CAS  Google Scholar 

  • Lee F, Chung JE, Kurisawa M (2009) An injectable hyaluronic acid-tyramine hydrogel system for protein delivery. J Control Release 134:186–193

    Article  CAS  PubMed  Google Scholar 

  • Lee F, Chung JE, Xu KM, Kurisawa M (2015a) Injectable degradation-resistant hyaluronic acid hydrogels cross-linked via the oxidative coupling of green tea catechin. Acs Macro Lett 4:957–960

    Article  CAS  PubMed  Google Scholar 

  • Lee F, Bae KH, Kurisawa M (2015b) Injectable hydrogel systems crosslinked by horseradish peroxidase. Biomed Mater 11:014101

    Article  PubMed  Google Scholar 

  • Lee HJ, Fernandes-Cunha GM, Myung D (2018) In situ-forming hyaluronic acid hydrogel through visible light-induced thiol-ene reaction. React Funct Polym 131:29–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, Chang K, Kim S, Gite V, Chung H, Sohn D (2016) Phase Controllable Hyaluronic Acid Hydrogel with Iron(III) Ion Catechol Induced Dual Cross-Linking by Utilizing the Gap of Gelation Kinetics. Macromolecules 49:7450–7459

    Article  CAS  Google Scholar 

  • Lee SY, Park JH, Yang M, Baek MJ, Kim MH, Lee J, Khademhosseini A, Kim DD, Cho HJ (2020b) Ferrous sulfate-directed dual-cross-linked hyaluronic acid hydrogels with long-term delivery of donepezil. Int J Pharmaceut 582:119309

    Article  CAS  Google Scholar 

  • Lee SY, Yang M, Seo JH, Jeong D, Hwang C, Kim HJ, Lee J, Lee K, Park J, Cho HJ (2021) Serially pH-Modulated Hydrogels Based on Boronate Ester and Polydopamine Linkages for Local Cancer Therapy. ACS Appl Mater Interfaces 13:2189–2203

    Article  CAS  PubMed  Google Scholar 

  • Li GZ, Randev RK, Soeriyadi AH, Rees G, Boyer C, Tong Z, Davis TP, Becer CR, Haddleton DM (2010) Investigation into thiol-(meth)acrylate Michael addition reactions using amine and phosphine catalysts. Polym Chem-Uk 1:1196–1204

    Article  CAS  Google Scholar 

  • Li J, Mooney DJ (2016) Designing hydrogels for controlled drug delivery. Nat Rev Mater 1:16071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu BW, Zhou H, Zhou ST, Yuan JY (2015) Macromolecules based on recognition between cyclodextrin and guest molecules: Synthesis, properties and functions. Eur Polym J 65:63–81

    Article  CAS  Google Scholar 

  • Liu GT, Yuan QJ, Hollett G, Zhao W, Kang Y, Wu J (2018) Cyclodextrin-based host-guest supramolecular hydrogel and its application in biomedical fields. Polym Chem-Uk 9:3436–3449

    Article  CAS  Google Scholar 

  • Liu YN, Fan DD (2019) Novel hyaluronic acid-tyrosine/collagen-based injectable hydrogels as soft filler for tissue engineering. Int J Biol Macromol 141:700–712

    Article  CAS  PubMed  Google Scholar 

  • Loebel C, Rodell CB, Chen MH, Burdick JA (2017) Shear-thinning and self-healing hydrogels as injectable therapeutics and for 3D-printing. Nat Protoc 12:1521–1541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowe AB (2010) Thiol-ene “click” reactions and recent applications in polymer and materials synthesis. Polym Chem-Uk 1:17–36

    Article  CAS  Google Scholar 

  • Lu Y, Sturek M, Park K (2014) Microparticles produced by the hydrogel template method for sustained drug delivery. Int J Pharmaceut 461:258–269

    Article  CAS  Google Scholar 

  • Mandal A, Clegg JR, Anselmo AC, Mitragotri S (2020) Hydrogels in the clinic. Bioeng Transl Med 5:e10158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mauri E, Negri A, Rebellato E et al (2018) Hydrogel-nanoparticles composite system for controlled drug delivery. Prog Coll Pol Sci S 4:74

    CAS  Google Scholar 

  • Mihajlovic M, Fermin L, Ito K et al (2021) Hyaluronic acid-based supramolecular hydrogels for biomedical applications. Multifunct Mater 4:032001

    Article  CAS  Google Scholar 

  • Nakama T, Ooya T, Yui N (2004) Temperature-and pH-controlled hydrogelation of poly (ethylene glycol)-grafted hyaluronic acid by inclusion complexation with α-cyclodextrin. Polym J 36:338–344

    Article  CAS  Google Scholar 

  • Necas J, Bartosikova L, Brauner P, Kolar J (2008) Hyaluronic acid (hyaluronan): a review. Vet Med 53:397–411

    Article  CAS  Google Scholar 

  • Nguyen LT, Hsu C-C, Ye H, Cui Z (2020) Development of an in situ injectable hydrogel containing hyaluronic acid for neural regeneration. Biomed Mater 15:055005

    Article  CAS  PubMed  Google Scholar 

  • Nimmo CM, Owen SC, Shoichet MS (2011) Diels-Alder click cross-linked hyaluronic acid hydrogels for tissue engineering. Biomacromol 12:824–830

    Article  CAS  Google Scholar 

  • Orlowski P, Zmigrodzka M, Tomaszewska E, Ranoszek-Soliwoda K, Pajak B, Slonska A, Cymerys J, Celichowski G, Grobelny J, Krzyzowska M (2020) Polyphenol-Conjugated Bimetallic Au@AgNPs for Improved Wound Healing. Int J Nanomed 15:4969–4990

    Article  CAS  Google Scholar 

  • Oudshoorn MHM, Rissmann R, Bouwstra JA, Hennink WE (2007) Synthesis of methacrylated hyaluronic acid with tailored degree of substitution. Polymer 48:1915–1920

    Article  CAS  Google Scholar 

  • Papakonstantinou E, Roth M, Karakiulakis G (2012) Hyaluronic acid: A key molecule in skin aging. Dermatoendocrinol 4:253–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park JH, Baek MJ, Lee JY, Kim KT, Cho HJ, Kim DD (2020) Preparation and characterization of sorafenib-loaded microprecipitated bulk powder for enhancing oral bioavailability. Int J Pharmaceut 589:119836

    Article  CAS  Google Scholar 

  • Patterson J, Stayton PS, Li XD (2009) In Situ Characterization of the Degradation of PLGA Microspheres in hyaluronic acid hydrogels by optical coherence tomography. Ieee T Med Imaging 28:74–81

    Article  Google Scholar 

  • Poldervaart MT, Goversen B, De Ruijter M, Abbadessa A, Melchels FPW, Oner FC, Dhert WJA, Vermonden T, Alblas J (2017) 3D bioprinting of methacrylated hyaluronic acid (MeHA) hydrogel with intrinsic osteogenicity. PLoS ONE 12:e0177628

    Article  PubMed  PubMed Central  Google Scholar 

  • Qiao Y, Xu SC, Zhu TZ, Tang N, Bai XJ, Zheng CM (2020) Preparation of printable double-network hydrogels with rapid self-healing and high elasticity based on hyaluronic acid for controlled drug release. Polymer 186:121994

    Article  CAS  Google Scholar 

  • Qu C, Rilla K, Tammi R, Tammi M, Kroger H, Lammi MJ (2014) Extensive CD44-dependent hyaluronan coats on human bone marrow-derived mesenchymal stem cells produced by hyaluronan synthases HAS1, HAS2 and HAS3. Int J Biochem Cell Biol 48:45–54

    Article  CAS  PubMed  Google Scholar 

  • Rodell CB, Dusaj NN, Highley CB, Burdick JA (2016a) Injectable and cytocompatible tough double-network hydrogels through tandem supramolecular and covalent crosslinking. Adv Mater 28:8419–8424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodell CB, Lee ME, Wang H et al (2016b) Injectable Shear-thinning hydrogels for minimally invasive delivery to infarcted myocardium to limit left ventricular remodeling. Circulation Cardiovasc Interventions 9:e004058

    Article  CAS  Google Scholar 

  • Rosales AM, Rodell CB, Chen MH, Morrow MG, Anseth KS, Burdick JA (2018) Reversible control of network properties in azobenzene-containing hyaluronic acid-based hydrogels. Bioconjugate Chem 29:905–913

    Article  CAS  Google Scholar 

  • Ryu J, Kim S, Oh I, Kato S, Kosuge T, Sokolova AV, Lee J, Otsuka H, Sohn D (2019) Internal Structure of Hyaluronic Acid Hydrogels Controlled by Iron(III) Ion-Catechol Complexation. Macromolecules 52:6502–6513

    Article  CAS  Google Scholar 

  • Seo JH, Lee SY, Kim S, Yang MY, Jeong D, Hwang C, Kim MH, Kim HJ, Lee J, Lee K, Kim DD, Cho HJ (2020) Monopotassium phosphate-reinforced in situ forming injectable hyaluronic acid hydrogels for subcutaneous injection. Int J Biol Macromol 163:2134–2144

    Article  CAS  PubMed  Google Scholar 

  • Shah N, Sandhu H, Phuapradit W, Pinal R, Iyer R, Albano A, Chatterji A, Anand S, Choi DS, Tang K, Tian H, Chokshi H, Singhal D, Malick W (2012) Development of novel microprecipitated bulk powder (MBP) technology for manufacturing stable amorphous formulations of poorly soluble drugs. Int J Pharm 438:53–60

    Article  CAS  PubMed  Google Scholar 

  • Shuai F, Zhang Y, Yin Y et al (2021) Fabrication of an injectable iron (III) crosslinked alginate-hyaluronic acid hydrogel with shear-thinning and antimicrobial activities. Carbohyd Polym 260:117777

    Article  CAS  Google Scholar 

  • Sitterli A, Heinze T (2019) Studies about reactive ene-functionalized dextran derivatives for Thiol-ene click reactions. React Funct Polym 136:66–74

    Article  CAS  Google Scholar 

  • Spearman BS, Agrawal NK, Rubiano A, Simmons CS, Mobini S, Schmidt CE (2020) Tunable methacrylated hyaluronic acid-based hydrogels as scaffolds for soft tissue engineering applications. J Biomed Mater Res, Part A 108:279–291

    Article  CAS  Google Scholar 

  • Tammi RH, Passi AG, Rilla K, Karousou E, Vigetti D, Makkonen K, Tammi MI (2011) Transcriptional and post-translational regulation of hyaluronan synthesis. FEBS J 278:1419–1428

    Article  CAS  PubMed  Google Scholar 

  • Tan HP, Chu CR, Payne KA, Marra KG (2009) Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials 30:2499–2506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan HP, Li H, Rubin JP, Marra KG (2011) Controlled gelation and degradation rates of injectable hyaluronic acid-based hydrogels through a double crosslinking strategy. J Tissue Eng Regen M 5:790–797

    Article  CAS  Google Scholar 

  • Tang S, Chi K, Xu H et al (2021) A covalently cross-linked hyaluronic acid/bacterial cellulose composite hydrogel for potential biological applications. Carbohyd Polym 252:117123

    Article  CAS  Google Scholar 

  • Tezel A, Fredrickson GH (2008) The science of hyaluronic acid dermal fillers. J Cosmet Laser Ther 10:35–42

    Article  PubMed  Google Scholar 

  • Tran DN, Colesnic D, De Beaumais SA, Pembouong G, Portier F, Queijo AA, Tato JV, Zhang Y, Menand M, Bouteiller L, Sollogoub M (2014) Cyclodextrin-adamantane conjugates, self-inclusion and aggregation versus supramolecular polymer formation. Org Chem Front 1:703–706

    Article  CAS  Google Scholar 

  • Trombino S, Servidio C, Curcio F, Cassano R (2019) Strategies for hyaluronic acid-based hydrogel design in drug delivery. Pharmaceutics 11:407

    Article  CAS  PubMed Central  Google Scholar 

  • Villate-Beitia I, Truong NF, Gallego I, Zarate J, Puras G, Pedraz JL, Segura T (2018) Hyaluronic acid hydrogel scaffolds loaded with cationic niosomes for efficient non-viral gene delivery. Rsc Adv 8:31934–31942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vorvolakos K, Isayeva IS, Do Luu H-M, Patwardhan DV, Pollack SK (2011) Ionically cross-linked hyaluronic acid: wetting, lubrication, and viscoelasticity of a modified adhesion barrier gel. Medical Devices (auckland, NZ) 4:1

    CAS  Google Scholar 

  • Wang L-S, Lee F, Lim J et al (2014) Enzymatic conjugation of a bioactive peptide into an injectable hyaluronic acid–tyramine hydrogel system to promote the formation of functional vasculature. Acta Biomater 10:2539–2550

    Article  CAS  PubMed  Google Scholar 

  • Wang ZF, Ren YP, Zhu Y, Hao LJ, Chen YH, An G, Wu HK, Shi XT, Mao CB (2018) A Rapidly self-healing host-huest supramolecular hydrogel with high mechanical strength and excellent biocompatibility. Angew Chem Int Edit 57:9008–9012

    Article  CAS  Google Scholar 

  • Wei KC, Zhu ML, Sun YX, Xu JB, Feng Q, Lin S, Wu TY, Xu J, Tian F, Xia J, Li G, Bian LM (2016) Robust Biopolymeric Supramolecular “Host-Guest Macromer” Hydrogels Reinforced by in Situ Formed Multivalent Nanoclusters for Cartilage Regeneration. Macromolecules 49:866–875

    Article  CAS  Google Scholar 

  • Wu LK, Di Cio S, Azevedo HS, Gautrot JE (2020) Photoconfigurable, cell-remodelable disulfide cross-linked hyaluronic acid hydrogels. Biomacromol 21:4663–4672

    Article  CAS  Google Scholar 

  • Xu KM, Lee F, Gao SJ, Chung JE, Yano H, Kurisawa M (2013) Injectable hyaluronic acid-tyramine hydrogels incorporating interferon-alpha 2a for liver cancer therapy. J Control Release 166:203–210

    Article  CAS  PubMed  Google Scholar 

  • Yang B, Guo XP, Zang HC, Liu JJ (2015) Determination of modification degree in BDDE-modified hyaluronic acid hydrogel by SEC/MS. Carbohyd Polym 131:233–239

    Article  CAS  Google Scholar 

  • Yang LL, Zhang LT, Hu J, Wang WJ, Liu XQ (2021) Promote anti-inflammatory and angiogenesis using a hyaluronic acid-based hydrogel with miRNA-laden nanoparticles for chronic diabetic wound treatment. Int J Biol Macromol 166:166–178

    Article  CAS  PubMed  Google Scholar 

  • Yang MY, Lee SY, Kim S, Koo JS, Seo JH, Jeong D, Hwang C, Lee J, Cho HJ (2020a) Selenium and dopamine-crosslinked hyaluronic acid hydrogel for chemophotothermal cancer therapy. J Control Release 324:750–764

    Article  CAS  PubMed  Google Scholar 

  • Yang R, Tan LH, Cen L, Zhang ZB (2016) An injectable scaffold based on crosslinked hyaluronic acid gel for tissue regeneration. Rsc Adv 6:16838–16850

    Article  CAS  Google Scholar 

  • Yang S, Zhu B, Yin P, Zhao LS, Wang YZ, Fu ZG, Dang RJ, Xu J, Zhang JJ, Wen N (2020b) Integration of human umbilical cord mesenchymal stem cells-derived exosomes with hydroxyapatite-embedded hyaluronic acid-alginate hydrogel for bone regeneration. Acs Biomater Sci Eng 6:1590–1602

    Article  CAS  PubMed  Google Scholar 

  • Yegappan R, Selvaprithiviraj V, Mohandas A, Jayakumar R (2019) Nano polydopamine crosslinked thiol-functionalized hyaluronic acid hydrogel for angiogenic drug delivery. Colloid Surface B 177:41–49

    Article  CAS  Google Scholar 

  • Yu CX, Gao HC, Li QT, Cao XD (2020) Injectable dual cross-linked adhesive hyaluronic acid multifunctional hydrogel scaffolds for potential applications in cartilage repair. Polym Chem-Uk 11:3169–3178

    Article  CAS  Google Scholar 

  • Yu S, Ji Y, Guo C, Lu D, Geng Z, Pei D, Liu Q (2021) A dual-cross-linked hydrogel based on hyaluronic acid/gelatin tethered via tannic acid: mechanical properties’ enhancement and stability control. Iran Polym J 30:307–317

    Article  CAS  Google Scholar 

  • Zander ZK, Hua G, Wiener CG, Vogt BD, Becker ML (2015) Control of mesh size and modulus by kinetically dependent cross-linking in hydrogels. Adv Mater 27:6283–6288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang JN, Chen BZ, Ashfaq M, Zhang XP, Guo XD (2018) Development of a BDDE-crosslinked hyaluronic acid based microneedles patch as a dermal filler for anti-ageing treatment. J Ind Eng Chem 65:363–369

    Article  CAS  Google Scholar 

  • Zhang Q, Wei X, Ji Y, Yin L, Dong Z, Chen F, Zhong M, Shen J, Liu Z, Chang L (2020a) Adjustable and ultrafast light-cured hyaluronic acid hydrogel: promoting biocompatibility and cell growth. J Mater Chem B 8:5441–5450

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Liu S, Li T et al (2020b) Cytocompatible and non-fouling zwitterionic hyaluronic acid-based hydrogels using thiol-ene “click” chemistry for cell encapsulation. Carbohyd Polym 236:116021

    Article  CAS  Google Scholar 

  • Zhang YM, Liu YH, Liu Y (2020c) Cyclodextrin-based multistimuli-responsive supramolecular assemblies and their biological functions. Adv Mater 32:1806158

    Article  CAS  Google Scholar 

  • Zhao N, Wang X, Qin L, Zhai M, Yuan J, Chen J, Li D (2016) Effect of hyaluronic acid in bone formation and its applications in dentistry. J Biomed Mater Res A 104:1560–1569

    Article  CAS  PubMed  Google Scholar 

  • Zhao WY, Li Y, Zhang X, Zhang R, Hu Y, Boyer C, Xu FJ (2020) Photo -responsive supramolecular hyaluronic acid hydrogels for accelerated wound healing. J Control Release 323:24–35

    Article  CAS  PubMed  Google Scholar 

  • Zhao YL, Stoddart JF (2009) Azobenzene-based light-responsive hydrogel system. Langmuir 25:8442–8446

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Li F, Wang X, Yu J, Wu D (2018) Hyaluronic acid and polyethylene glycol hybrid hydrogel encapsulating nanogel with hemostasis and sustainable antibacterial property for wound healing. ACS Appl Mater Interfaces 10:13304–13316

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Research Foundation of Korea (NRF) grants funded by the Ministry of Science and ICT (Nos. NRF-2018R1A5A2024425, NRF-2018M3A7B4071203, and NRF-2020R1A2C2099983).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae-Duk Kim.

Ethics declarations

Conflict of interest

All authors (M.H. Kim, D.T. Nguyen and D.D. Kim) declare that they have no conflict of interest.

Statement of Human and Animal Rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, MH., Nguyen, DT. & Kim, DD. Recent studies on modulating hyaluronic acid-based hydrogels for controlled drug delivery. J. Pharm. Investig. 52, 397–413 (2022). https://doi.org/10.1007/s40005-022-00568-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-022-00568-w

Keywords

Navigation