Skip to main content

Advertisement

Log in

Micronization of a poorly water-soluble drug, fenofibrate, via supercritical-fluid-assisted spray-drying

  • Original Article
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

Purpose

In the present study, fenofibrate (a model drug with poor aqueous solubility) was micronized using the supercritical-fluid-assisted spray-drying (SA-SD) process to improve dissolution and biopharmaceutical property.

Methods

Solid-state characterizations including particle size analysis and dissolution test were carried out. To identify the main effects of SA-SD process parameters (such as pressure, temperature, concentration of drug solution, supercritical carbon dioxide (SC-CO2) injection rate, and drug solution injection rate) on the morphology and particle size distribution of micronized fenofibrate particles, a 27−3IV fractional factorial screening design was employed. Moreover, the effect of improved dissolution rate via micronization using SA-SD technology on the biopharmaceutical properties of fenofibrate was evaluated in a pharmacokinetic (PK) study in Sprague–Dawley rats.

Results

The results of the screening design showed that the mean particle size and distribution can be controlled by manipulating the drug solution concentration and CO2 injection rate. The SA-SD process resulted in a significant decrease in mean particle size (1.8–8.33 μm), as compared with that of unprocessed fenofibrate (24.2 ± 0.8 μm). There was a significant enhancement in the dissolution rate of micronized fenofibrate particles smaller than 5 μm compared to that of unprocessed fenofibrate. Moreover, an in vivo PK study in Sprague–Dawley rats showed that the increased dissolution rate improved biopharmaceutical properties (larger area under the curve and maximum serum concentration) of micronized fenofibrate than those of unprocessed fenofibrate.

Conclusion

Therefore, the SA-SD process is a useful micronization technology for improving both physicochemical and biopharmaceutical properties of poorly water-soluble drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abuzar SM, Hyun S-M, Kim J-H, Park HJ, Kim M-S, Park J-S, Hwang S-J (2018) Enhancing the solubility and bioavailability of poorly water-soluble drugs using supercritical antisolvent (SAS) process. Int J Pharm 538:1–13

    Article  CAS  PubMed  Google Scholar 

  • Amidon GL, Lennernas H, Shah VP, Crison JR (1995) A theoretical basis for a biopharmaceutics drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 12:413–420

    Article  CAS  PubMed  Google Scholar 

  • Benet LZ, Amidon GL, Barends DM, Lennernas H, Polli JE, Shah VP, Stavchansky SA, Yu LX (2008) The use of BDDCS in classifying the permeability of marketed drugs. Pharm Res 25:483–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cha K-H, Cho K-J, Kim M-S, Kim J-S, Park HJ, Park J, Cho W, Park J-S, Hwang S-J (2012) Enhancement of the dissolution rate and bioavailability of fenofibrate by a melt-adsorption method using supercritical carbon dioxide. Int J Nanomed 7:5565

    CAS  Google Scholar 

  • Chattopadhyay P, Gupta RB (2002) Supercritical CO2 based production of magnetically responsive micro- and nano-particles for drug targeting. Ind Eng Chem Res 41:6049–6058

    Article  CAS  Google Scholar 

  • Cho E, Cho W, Cha K-H, Park J, Kim M-S, Kim J-S, Park HJ, Hwang S-J (2010) Enhanced dissolution of megestrol acetate microcrystals prepared by antisolvent precipitation process using hydrophilic additives. Int J Pharm 396:91–98

    Article  CAS  PubMed  Google Scholar 

  • Cho W, Kim M-S, Jung M-S, Park J, Cha K-H, Kim J-S, Park HJ, Alhalaweh A, Velaga SP, Hwang S-J (2015) Design of salmon calcitonin particles for nasal delivery using spray-drying and novel supercritical fluid-assisted spray-drying processes. Int J Pharm 478:288–296

    Article  CAS  PubMed  Google Scholar 

  • Corrigan O, Crean A (2002) Comparative physicochemical properties of hydrocortisone-PVP composites prepared using supercritical carbon dioxide by the GAS anti-solvent recrystallization process, by coprecipitation and by spray drying. Int J Pharm 245:75–82

    Article  CAS  PubMed  Google Scholar 

  • Costa C, Casimiro T, Aguiar-Ricardo A (2018) Optimization of supercritical CO2-assisted atomization: phase behavior and design of experiments. J Chem Eng Data 63:885–896

    Article  CAS  Google Scholar 

  • Cunha MSS, Martinez-Pacheco R, Landin M (2008) Dissolution rate enhancement of the novel antitumoral beta-lapachone by solvent change precipitation of microparticles. Eur J Pharm Biopharm 69:871–877

    Article  CAS  Google Scholar 

  • Duarte ARC, Costa MS, Simplicio AL, Cardoso MM, Duarte CMM (2006) Preparation of controlled release microspheres using supercritical fluid technology for delivery of anti-inflammatory drugs. Int J Pharm 308:168–174

    Article  CAS  PubMed  Google Scholar 

  • Elvassore N, Baggio M, Pallado P, Bertucco A (2001) Production of insulin-loaded poly(ethylene glycol)/poly(l-lactide)(PEG/PLA) nanoparticles by gas antisolvent techniques. J Pharm Sci 90:1628–1636

    Article  CAS  PubMed  Google Scholar 

  • Fages J, Lochard H, Letourneau J-J, Sauceau M, Rodier E (2004) Particle generation for pharmaceutical applications using supercritical fluid technology. Powder Technol 141:219–226

    Article  CAS  Google Scholar 

  • Falk RF, Randolph TW (1998) Process variable implications for residual solvent removal and polymer morphology in the formation of Gentamycin-loaded poly(l-lactide) microparticles. Pharm Res 15:1233–1237

    Article  CAS  PubMed  Google Scholar 

  • Ghaderi R, Artursson P, Carlfors J (1999) Preparation of biodegradable microparticles using solution-enhanced dispersion by supercritical fluids (SEDS). Pharm Res 16:676–681

    Article  CAS  PubMed  Google Scholar 

  • Graser F, Wickenhaeuser G (1982) Conditioning of finely divided crude organic pigments. US Patent 4,451,654

  • Guichard J, Blouquin P, Qing Y (2000) A new formulation of fenofibrate: suprabioavailable tablets. Curr Med Res Opin 16:134–138

    Article  CAS  PubMed  Google Scholar 

  • Hanafy A, Spahn-Langguth H, Vergnault G, Grenier P, Grozdanis MT, Lenhardt T, Langguth P (2007) Pharmacokinetic evaluation of oral fenofibrate nanosuspensions and SLN in comparison to conventional suspensions of micronized drug. Adv Drug Deliv Rev 59:419–426

    Article  CAS  PubMed  Google Scholar 

  • Hanna M, York P (1995) Method and apparatus for the formation of particles. WO Patent WO95/001221

  • Heinz A, Gordon KC, Mcgoverin CM, Rades T, Strachan CJ (2009) Understanding the solid-state forms of fenofibrate—a spectroscopic and computational study. Eur J Pharm Biopharm 71(1):100–110

    Article  CAS  PubMed  Google Scholar 

  • Huang QP, Wang JX, Chen GZ, Shen ZG, Chen JF, Yun J (2008) Micronization of gemfibrozil by reactive precipitation process. Int J Pharm 360:58–64

    Article  CAS  PubMed  Google Scholar 

  • Hwang SJ, Kim MS, Kim JS, Cha KH, Cho WK, Park JS, Seo SJ (2014) Manufacturing method and apparatus of ultrafine particles having uniform particle size distribution. US Patent 8,734,830

  • Junghanns J-UA, Müller RH (2008) Nanocrystal technology, drug delivery and clinical applications. Int J Nanomed 3:295

    CAS  Google Scholar 

  • Kankala RK, Xu P-Y, Chen B-Q, Wang S-B, Chen A-Z (2021) Supercritical fluid (SCF)-assisted fabrication of carrier-free drugs: an eco-friendly welcome to Active Pharmaceutical Ingredients (APIs). Adv Drug Deliv Rev 176:113846

    Article  CAS  PubMed  Google Scholar 

  • Kazarian S (2000) Polymer processing with supercritical fluids. Polym Sci Ser C 42:78–101

    Google Scholar 

  • Kim JA, Paxton TE, Tomasko DL (1996) Microencapsulation of naproxen using rapid expansion of supercritical solutions. Biotechnol Prog 12:650–661

    Article  CAS  Google Scholar 

  • Kim M-S, Lee S, Park J-S, Woo J-S, Hwang S-J (2007) Micronization of cilostazol using supercritical antisolvent (SAS) process: effect of process parameters. Powder Technol 177:64–70

    Article  CAS  Google Scholar 

  • Kim J-S, Kim M-S, Park HJ, Jin S-J, Lee S, Hwang S-J (2008a) Physicochemical properties and oral bioavailability of amorphous atorvastatin hemi-calcium using spray-drying and SAS process. Int J Pharm 359:211–219

    Article  CAS  PubMed  Google Scholar 

  • Kim M-S, Jin S-J, Kim J-S, Park HJ, Song H-S, Neubert RH, Hwang S-J (2008b) Preparation, characterization and in vivo evaluation of amorphous atorvastatin calcium nanoparticles using supercritical antisolvent (SAS) process. Eur J Pharm Biopharm 69:454–465

    Article  CAS  PubMed  Google Scholar 

  • Kim M-S, Kim J-S, Hwang S-J (2010) Enhancement of wettability and dissolution properties of cilostazol using the supercritical antisolvent process: effect of various additives. Chem Pharm Bull 58:230–233

    Article  CAS  Google Scholar 

  • Knez Z, Weidner E (2003) Particles formation and particle design using supercritical fluids. Curr Opin Solid State Mater Sci 7:353–361

    Article  CAS  Google Scholar 

  • Li X, Gu L, Xu Y, Wang Y (2009) Preparation of fenofibrate nanosuspension and study of its pharmacokinetic behavior in rats. Drug Dev Ind Pharm 35:827–833

    Article  CAS  PubMed  Google Scholar 

  • Lindenberg M, Kopp S & Dressman JB (2004) Classification of orally administered drugs on the World Health Organization model list of essential medicines according to the biopharmaceutics classification system. Eur J Pharm Biopharm 58:265–278

  • Ling H, Luoma JT, Hilleman D (2013) A review of currently available fenofibrate and fenofibric acid formulations. Cardiol Res 4:47

    PubMed  PubMed Central  Google Scholar 

  • Lipinski C (2001) Avoiding investment in doomer drugs, is poor solubility an industry wide problem? Curr Drug Discov 4:17–19

    Google Scholar 

  • Lipinski C (2002) Poor aqueous solubility—an industry wide problem in drug discovery. Am Pharm Rev 5:82–85

    Google Scholar 

  • Lippold BC, Ohm A (1986) Correlation between wettability and dissolution rate of pharmaceutical powders. Int J Pharm 28:67–74

    Article  CAS  Google Scholar 

  • Loh ZH, Samanta AK, Heng PWS (2015) Overview of milling techniques for improving the solubility of poorly water-soluble drugs. Asian J Pharm Sci 10:255–274

    Article  Google Scholar 

  • Lu Y, Tang N, Lian R, Qi J, Wu W (2014) Understanding the relationship between wettability and dissolution of solid dispersion. Int J Pharm 465:25–31

    Article  CAS  PubMed  Google Scholar 

  • Maltesen MJ, Bjerregaard S, Hovgaard L, Havelund S, Van De Weert M (2008) Quality by design–Spray drying of insulin intended for inhalation. Eur J Pharm Biopharm 70:828–838

    Article  CAS  PubMed  Google Scholar 

  • McClellan AK, McHugh MA (1985) Seperating polymer solutions with supercritical fluids. Macromolecules 18:674–681

    Article  Google Scholar 

  • Meziani MJ, Pathak P, Hurezeanu R, Thies MC, Enick RM, Sun YP (2004) Supercritical-fluid processing technique for nanoscale polymer particles. Angew Chem Int 3:704–707

    Article  CAS  Google Scholar 

  • Meziani M, Pathak P, Beacham F, Allard L, Sun Y (2005) Nanoparticle formation in rapid expansion of water-in-supercritical carbon dioxide microemulsion into liquid solution. J Supercrit Fluids 34:91–97

    Article  CAS  Google Scholar 

  • Moshashaee S, Bisrat M, Forbes R, Quinn E, Nyqvist H, York P (2003) Supercritical fluid processing of proteins: lysozyme precipitation from aqueous solution. J Pharm Pharmacol 55:185–192

    Article  CAS  PubMed  Google Scholar 

  • Moura C, Casimiro T, Costa E, Aguiar-Ricardo A (2019) Optimization of supercritical CO2-assisted spray drying technology for the production of inhalable composite particles using quality-by-design principles. Powder Technol 357:387–397

    Article  CAS  Google Scholar 

  • Noyes A, Whitney W (1987) The rate of solution of solid substances in their own solutions. J Am Chem Soc 19:930–934

    Article  Google Scholar 

  • Pasquali I, Bettini R (2008) Are pharmaceutics really going supercritical? Int J Pharm 364:176–187

    Article  CAS  PubMed  Google Scholar 

  • Pasquali I, Comi L, Pucciarelli F, Bettini R (2008) Swelling, melting point reduction, and solubility of PEG 1500 in supercritical CO2. Int J Pharm 356:76–81

    Article  CAS  PubMed  Google Scholar 

  • Pathak P, Meziani MJ, Desai T, Sun YP (2004) Nanosizing drug particles in supercritical fluid processing. J Am Chem Soc 126:10842–10843

    Article  CAS  PubMed  Google Scholar 

  • Paudel A, Worku ZA, Meeus J, Guns S, Van Den Mooter G (2013) Manufacturing of solid dispersions of poorly water soluble drugs by spray drying: formulation and process considerations. Int J Pharm 453:253–284

    Article  CAS  PubMed  Google Scholar 

  • Perrut M, Jung J, Leboeuf F (2005) Enhancement of dissolution rate of poorly-soluble active ingredients by supercritical fluid processes: part I: micronization of neat particles. Int J Pharm 288:3–10

    Article  CAS  PubMed  Google Scholar 

  • Porta G, Reverchon E (2005) Engineering powder properties by supercritical fluid for optimum drug delivery. Part two: supercritical-assisted atomisation. BioProcess Int 3:54–60

    Google Scholar 

  • Rathbone MJ, Hadgraft J, Roberts MS (2003) Modified release drug delivery technology. Marcel Dekker, New York

    Google Scholar 

  • Reverchon E (2002) Supercritical-assisted atomization to produce micro- and/or nano particles of controlled size and distribution. Ind Eng Chem Res 41:2405–2111

    Article  CAS  Google Scholar 

  • Reverchon E, Marco I (2004) Supercritical antisolvent micronization of cefonicid: thermodynamic interpretation of results. J Supercrit Fluifs 31:207–215

    Article  CAS  Google Scholar 

  • Rodier E, Lochard G, Sauceau M, Letourneau J, Freiss B, Fages J (2005) A three step supercritical process to improve the dissolution rate of Eflucimibe. Eur J Pharm Sci 22:1–17

    Google Scholar 

  • Savla R, Browne J, Plassat V, Wasan KM, Wasan EK (2017) Review and analysis of FDA approved drugs using lipid-based formulations. Drug Dev Ind Pharm 43:1743–1758

    Article  CAS  PubMed  Google Scholar 

  • Seckner AJ, Mcclellan AK, Mchugh MA (1988) High solution behavior of the polymer-toluene-ethane system. AIChE 34:9–16

    Article  CAS  Google Scholar 

  • Sethia S, Squillante E (2002) Physicochemical characterization of solid dispersion of carbamazepine formulated by supercritical carbon dioxide and conventional solvent evaporation method. J Pharm Sci 91:1948–1957

    Article  CAS  PubMed  Google Scholar 

  • Sievers RE, Karst U (1997) Methods and apparatus for fine particle production. US Patent 5,639,411

  • Snavely W, Subramaniam B, Rajewski R, Defelippis M (2002) Micronization of insulin from halogenated alcohol solution using supercritical carbon dioxide as an antisolvent. J Pharm Sci 91:2026–2038

    Article  CAS  PubMed  Google Scholar 

  • Ventosa N, Sala S, Veciana J (2003) DELOS process: a crystallization technique using compressed fluids: 1. Comparison to the GAS crystallization method. J Supercrit Fluids 26:33–45

    Article  CAS  Google Scholar 

  • Vogt M, Kunath K, Dressman JB (2008) Dissolution enhancement of fenofibrate by micronization, cogrinding and spray-drying: comparison with commercial preparations. Eur J Pharm Biopharm 68:283–288

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wei D, Dave R, Pfeffer R, Sauceau M, Letourneau J, Fages J (2002) Extraction and precipitation particles coating using supercritical CO2. Powder Technol 127:32–44

    Article  CAS  Google Scholar 

  • Weidner E, Petermann M, Blatter K, Rekowski V (2001) Manufacture of powder coatings by spraying of gas-enriched melts. Chem Eng Technol 24:529–533

    Article  CAS  Google Scholar 

  • World Health Organization, WHO (2021) WHO model list of essential medicines, 22nd list. Geneva: World Health Organization; 2021 (WHO/MHP/HPS/EML/2021.02). Licence: CC BY-NC-SA 3.0 IGO

  • Yang B, Wei C, Qian F, Li S (2019) Surface wettability modulated by surfactant and its effects on the drug release and absorption of fenofibrate solid dispersions. AAPS PharmSciTech 20:1–10

    Article  CAS  Google Scholar 

  • Young TJ, Mawson S, Johnston KP, Henriksen IB, Pace GW, Mishra AK (2000) Rapid expansion from supercritical to aqueous solution to produce submicron suspensions of water-insoluble drugs. Biotechnol Prog 16:402–407

    Article  CAS  PubMed  Google Scholar 

  • Young T, Johnston K, Pace G, Mishra A (2004) Phospholipid-stabilized nanoparticles of cyclosporine a by rapid expansion from supercritical to aqueous solution. AAPS PharmSciTech 5:70–85

    PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation (NRF) of Korea funded by the Ministry of Education (2016R1A6A1A03007648). This work was supported by the Mid-Career Researcher Program (No. NRF-2021R1A2C2008834) and Basic Research Infrastructure Support Program (University-Centered Labs-2018R1A6A1A03023718) through the National Research Foundation of Korea (NRF) funded by the Korean government (MSIT). This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1A2C4002166).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min-Soo Kim or Sung-Joo Hwang.

Ethics declarations

Conflict of interest

All authors (J.-S. Kim, H. Park, K.-T. Kang, E.-S. Ha, M.-S. Kim, and S.-J. Hwang) declare no conflict of interest.

Research involving human and animal rights

The animal study was conducted according to the guidelines of the Care and Use of Laboratory Animals, and approved by the Institutional Review Board of the nonclinical contract research organization, KPC laboratory (Approved Protocol Code: I-1708186, Date of Approval: 29 August 2017).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, JS., Park, H., Kang, KT. et al. Micronization of a poorly water-soluble drug, fenofibrate, via supercritical-fluid-assisted spray-drying. J. Pharm. Investig. 52, 353–366 (2022). https://doi.org/10.1007/s40005-022-00565-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-022-00565-z

Keywords

Navigation