Skip to main content

Advertisement

Log in

Chemistry and pharmacology of Bidens pilosa: an overview

  • Review
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

Bidens pilosa L. is an edible herb and has been traditionally used for a wide range of ailments in many countries. The aim of this review is to present comprehensive information of the chemical constituents, nutraceutical and ethnomedical uses as well as the biological and pharmacological effects and toxicity of this plant based on 218 literary sources reported over 40 years. Major chemical constituents (including 301 compounds) belonging to polyacetylenes, polyacetylene glycosides, flavonoids, flavone glycosides, aurones, chalcones, okanin glycosides, phenolic acids, terpenes, pheophytins, fatty acids and phytosterols have been identified or isolated from the different parts of this plant. Many of them have been considered as the bioactive compounds which are potentially responsible for the pharmacological actions. Various types of preparations, extracts and individual compounds derived from this plant have been found to possess biological and pharmacological activities such as anti-malarial, anti-allergy, anti-hypertensive and smooth muscle relaxant, anti-cancerogenic, anti-diabetic, anti-inflammatory, anti-microbial, antioxidant. The results of data analysis on the chemicals, pharmacological and toxicological characteristics of B. pilosa validate the view of its folk worldwide-medicinal uses. This herb has a great beneficial therapeutic property and is possibly used for complement or alternative to pharmaceutical drugs in some specific cases. However, this herb is known as hyperaccumulator and as-excluder; therefore, harvesting the herb for medicinal uses should be judiciously cautioned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

AAPH:

2,2′-Azobis(2-amidinopropane) dihydrochloride

As:

Arsenic

Cd:

Cadmium

COX-2:

Cyclooxygenase-2

BTEC:

B. pilosa treated with the cellulosine enzyme

DPPH:

1,1-Diphenyl-2-picryl-hydrazyl

EtOAc:

Ethyl acetate

GSH:

Glutathione

IC 50 :

50 % inhibition concentration

IFN-γ:

Interferon gamma

HAE:

Crude hydroalcoholic extract

HIV:

Human immunodeficiency virus

HPLC:

High performance liquid chromatography

HSV:

Herpes simplex viruses

HUVEC:

Human umbilical vein endothelium cells

MeOH:

Methanol

Me2CO:

Acetone

NOD:

Nonobese diabetic

PHT:

Phenylheptatrine

PLN:

Popliteal lymph node

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TFB:

Total flavonoids of B. pilosa

Th0:

Naïve helper T

Th1:

Type I helper T

Th2:

Type II helper T

TI:

Thymidine incorporation

TPA:

12-O-Tetradecanoyl phorbol-13-acetate

UV:

Ultraviolet

References

  • Abajo C, Boffill MA, Campo JD, Mendez MA, Gonzalez Y, Mitjans M, Vinardel MP (2004) In vitro study of the anti-oxidant and immunomodulatory activity of aqueous infusion of Bidens pilosa. J Ethnopharmacol 93:319–323

    Article  PubMed  Google Scholar 

  • Abbas AK, Lichtman AH, Pober JS (1994) Cellular and molecular immunology. W. B. Saunders Company, Philadelphia PA

    Google Scholar 

  • Abe T, Fukami M, Oagsawara M (2008) Cadmium accumulation in the shoot and roots of 93 weed species. Soil Sci Pla Nutr 54:566–573

    Article  CAS  Google Scholar 

  • Alarcon de la Lastra C, Martin MJ, Motilva V (1994) Antiulcer and gastroprotective effects of quercetin, a gross and histologic study. Pharmacology 48:56–63

    Article  CAS  PubMed  Google Scholar 

  • Alarcon-Aguilar FJ, Roman-Ramos R, Flores-Saenz JL, Aguirre-Garcia F (2002) Investigation on the hypoglycaemic effects of extracts of four Mexican medicinal plants in normal and alloxan-diabetic mice. Phytother Res 16:383–386

    Article  CAS  PubMed  Google Scholar 

  • Alcaraz MJ, Jimenez MJ (1988) Flavonoids as anti-inflammatory agents. Fitoterapia 59:25–38

    CAS  Google Scholar 

  • Alvarez L, Marquina S, Villarreal ML, Alonso D, Aranda E, Delgado G (1996) Bioactive polyacetylens from Bidens pilosa. Planta Med 62:355–357

    Article  CAS  PubMed  Google Scholar 

  • Alvarez A, Pomar F, Sevilla MA, Montero MJ (1999) Gastric antisecretory and antiulcer activities of an ethanolic extract of Bidens pilosa L. var. radiata Schult. Bip. J Ethnopharmacol 67:333–340

    Article  CAS  PubMed  Google Scholar 

  • Andrade-Neto VF, Brandao MG, Oliveira FQ, Casali VW, Njaine B, Zalis MG, Oliveira LA, Krettli AU (2004) Antimalarial activity of Bidens pilosa L. (Asteraceae) ethanol extracts from wild plants collected in various localities or plants cultivated in humus soil. Phytother Res 18:634–639

    Article  CAS  PubMed  Google Scholar 

  • Arora A, Nair MG, Strasburg GM (1998) Structure–activity relationships for antioxidant activities of series of flavonoids in a liposomal system. Free Radic Biol Med 24:1355–1363

    Article  CAS  PubMed  Google Scholar 

  • Ashafa AQT, Afolayan AJ (2009) Screening the root extracts from Bidens pilosa L. var. radiata (Asteraceae) from antimicrobial potentials. J Med Plants Res 3:568–572

    Google Scholar 

  • Ayyanar M, Ignacimuthu S (2005) Traditional knowledge of Kani tribals in Kouthalai of Tirunelveli hills, Tamil Nadu, India. J Ethnopharmacol 102:246–255

    Article  CAS  PubMed  Google Scholar 

  • Ballard RE (1975) Biosystematic and chemosystematic study of the Bidens pilosa complex in north and Central America. Ph. D. dissertation, University of Iowa

  • Ballard R (1986) Bidens pilosa complex (Asteraceae) in North and Central America. Am J Bot 73:1452–1465

    Article  Google Scholar 

  • Benhura MAN, Chitsiku IC (1997) The extractable β-carotene content of Guku (Bidens pilosa) leaves after cooking, drying and storage. Int J Food Sci Tech 32:495–500

    Article  CAS  Google Scholar 

  • Beutler JA, Hamel E, Vlietinck AJ, Haemers A, Rajan P, Roitman JN, Cardellina II, Boyd MR (1998) Structure-activity requirements for flavones cytotoxicity and binding to tubulin. J Med Chem 41:2333–2338

    Article  CAS  PubMed  Google Scholar 

  • Bhatt KC, Sharama N, Pandey A (2009) “Ladakhi tea” Bidens pilosa L. (Asteraceae): a cultivated species in the cold desert of Ladakh Himalaya. India. Genet Resour Crop Evol 56:879–882

    Article  Google Scholar 

  • Bohlmann F, Bornowski H, Kleine KM (1964) New polyynes from the tribe Heliantheae. Chem Berlin 97:2135–2138

    Article  CAS  Google Scholar 

  • Bohlmann F, Burkhardt T, Zdero C (1973) Naturally Occurring Acetylenes. Academic Press Inc, New York

    Google Scholar 

  • Bondarenko PM, Deviatkin EV, Liskun IG (1968) Materials on recent tectonics and stratigraphy of Cenozoic deposits of the Aktash area, Kurai neotectonic zone, Gorny Altai. Problems of geomorphology and neotectonics of Siberia and Far East orogenic areas. In: Proceedings of the All-Union Coni Geomorphology Tectonics of Siberia and Far East, vol. 2. Nauka, Novosibirsk pp 65–81

  • Bondarenko AS, Petrenko GT, Aizenman BE, Evseenko OV (1985a) Antimicrobial properties of phenylheptatriyne, a polyacetylene antibiotic. Mikrobiol Zh (Kiev) 47:81–83

    CAS  Google Scholar 

  • Bondarenko AS, Kuznetsov NV, Krasavtsev II, Mishenkova EL, Petrenko GT, Evseenko VO (1985b) Comparative study of the antimicrobial activity of natural and synthetic phenylheptatriyne and its derivatives. Mikrobiol Zh (Kiev) 47:101–104

    CAS  Google Scholar 

  • Bourque G, Arnason JT, Madhosingh C, Orr W (1985) The photosensitization of the plant pathogen Fusarium culmorum by phenylheptatriyne from Bidens pilosa. Can J Bot 63:899–902

    CAS  Google Scholar 

  • Brandao MG, Krettli A, Soares L, Nery CG, Marinuzi HC (1997) Antimalaria activity of extracts and fractions from Bidens pilosa and other Bidens species (Asteraceae) correlated with the presence of acetylene and flavonoid compounds. J Ethnopharmacol 57:131–138

    Article  CAS  PubMed  Google Scholar 

  • Brandao MGL, Nery CGC, Mamao MAS, Krettli AU (1998) Two methoxylated flavones aglycosides from Bidens pilosa. Phytochemistry 48:397–399

    Article  CAS  Google Scholar 

  • Bushnell OA, Fukuda M, Makinodan T (1950) The antibacterial properties of some plants found in Hawaii. Pacif Sci 4:167–183

    Google Scholar 

  • Calcabrini A, Stringaro A, Toccacieli L, Meschini S, Marra M, Colone M, Salvatore G, Mondello F, Arancia G, Molinari A (2004) Terpinen-4-ol the main component of Melaleuca alternifolia (tea tree) oil inhibits the in vitro growth of human melanoma cells. J Invest Dermatol 122:349–360

    Article  CAS  PubMed  Google Scholar 

  • Cambie RC, Ash J (2004) Fijian medicinal plants. CSIRO, Melbourne

    Google Scholar 

  • Cantonwine EG, Downum KR (2001) Phenylheptatriyne variation in Bidens alba var. radiata leaves. J Chem Ecol 27:313–326

    Article  CAS  PubMed  Google Scholar 

  • Capinera JL (2008) Encyclopedia of entomology, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Chang M, Wang G, Kuo YH, Lee CK (2000) The low polar constituents from Bidens pilosa L. var. minor (Blume) Sheriff. J Chin Chem Soc 47:1131–1136

    Article  CAS  Google Scholar 

  • Chang JS, Chiang LC, Chen CC, Liu LT, Wang KC, Lin CC (2001) Antileukemic activity of Bidens pilosa L. var. minor (Blume) Sherff and Houttuynia cordata Thunb. Am J Chin Med 29:303–312

    Article  CAS  PubMed  Google Scholar 

  • Chang SL, Chang CLT, Chiang YM, Hsieh RH, Tzeng CR, Wu TK, Sytwu HK, Shyur LF, Yang WC (2004) Polyacetylenic compounds and butanol fraction from Bidens pilosa can modulate the differentiation of helper T cells and prevent autoimmune diabetes in non-obese diabetic mice. Planta Med 70:1045–1051

    Article  CAS  PubMed  Google Scholar 

  • Chang CLT, Kuo HK, Chang SL, Chiang YM, Lee TH, Wu MW, Shyur LF, Yang WC (2005) The distinct effects of a butanol fraction of Bidens pilosa plant extract on the development of Th1-mediated diabetes and Th2-mediated airway inflammation in mice. J Biomed Sci 12:79–89

    Article  PubMed  Google Scholar 

  • Chang SL, Chiang YM, Chang CLT, Yeh HH, Shyur LF, Kuo YH, Wu TK, Yang WC (2007a) Flavonoids, centaurein and centaureindin, from Bidens pilosa, stimulate IFNγ expression. J Ethnopharmacol 112:232–236

    Article  CAS  PubMed  Google Scholar 

  • Chang SL, Yeh HH, Lin YS, Chiang YM, Wu TK, Yang WC (2007b) The effect of centaurein on interon-gamma expression and Listeria infection in mice. Toxicol Appl Pharmacol 219:54–61

    Article  CAS  PubMed  Google Scholar 

  • Chang CLT, Chang SL, Chiang YM, Chuang DY, Kuo HK, Yang WC (2007c) Cytopiloyne, a polyacetylenic glucoside, prevents type 1 diabetes in nobobese diabetic mice. J Immunol 178:6984–6993

    Article  CAS  PubMed  Google Scholar 

  • Chaturvedi AK, Parmar SS, Bhatnagar SC, Mistra G, Nigam SK (1974) Anticonvulsant and anti-inflammatory activity of natural plant coumarins and triterpenoids. Res Commun Chem Phathol Pharmacol 9:11–22

    CAS  Google Scholar 

  • Chen JH, Ho CT (1997) Antioxidant activities of caffeic acid and its related hydroxycinnamic acid compounds. J Agric Food Chem 45:2374–2378

    Article  CAS  Google Scholar 

  • Chen AH, Lin SR, Hong CH (1975) Phytochemical study on Bidens pilosa L. var minor. Chin Chem Soc 2:28–42

    Google Scholar 

  • Chen W, Song J, Guo P, Wen ZY (2006) Butein: a more effective antioxidant than α-tocopherol. J Mol Struct Theochem 763:161–164

    Article  CAS  Google Scholar 

  • Chiang LC, Chang JS, Chen CC, Ng LT, Lin CC (2003) Anti-herpes simplex virus activity of Bidens pilosa and Houttuynia cordata. Am J Chin Med 31:355–362

    Article  PubMed  Google Scholar 

  • Chiang YM, Chuang DY, Wang SY, Kuo YH, Tsai PW, Shyur LE (2004) Metabolite profiling and chemopreventive bioactivity of plant extracts from Bidens pilosa. J Ethnopharmacol 95:409–419

    Article  CAS  PubMed  Google Scholar 

  • Chiang YM, Lo CP, Chen YP, Wang SY, Yang NS, Kuo YH, Shyur LF (2005) Ethyl caffeate suppresses NF-kB activation and its downstream inflammatory mediators; iNOS; COX-2; and PGE2 in vitro or in mouse skin. Br J Pharmacol 146:352–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang YM, Chang CLT, Chang SL, Yang WC, Shyur LF (2007) Cytopiloyne; a novel polyacetylenic aglucoside from Bidens pilosa; functions as a T helper cell modulator. J Ethnopharmacol 110:532–583

    Article  CAS  PubMed  Google Scholar 

  • Chien SC, Young PH, Hsu YJ, Chen CH, Tien YJ, Shiu SY, Li TH, Yang CW, Marimuthu P, Tsai LFL, Yang WC (2009) Anti-diabetic properties of three common Bidens pilosa variants in Taiwan. Phytochemistry 70:1246–1254

    Article  CAS  PubMed  Google Scholar 

  • Chih HW, Lin CC, Tang KS (1996) The hepatoprotective effects of Taiwan folk medicine Ham-Hong-Chho in rats. Am J Chin Med 24:231–240

    Article  Google Scholar 

  • Chung TT, Wong TY, Wei CI, Huang YW, Lin Y (1998) Tannins and human health: a review. Crit Rev Food Sci Nutr 38:421–464

    Article  CAS  PubMed  Google Scholar 

  • CIMAP (2008) Highlights annual report. Central Institute of Medicinal and Aromatic Plant (CSIR); Lucknow: India

  • Connelly P (2009) Horrible weed or miracle herb? A review of Bidens pilosa. J Aust Tradit Med Soc 15:77–79

    Google Scholar 

  • Corren J, Lemay M, Lin Y, Rozga L, Randolph RK (2008) Clinical and biochemical effects of a combination botanical product (ClearGuard™) for allergy: a pilot randomized double-blind placebo-controlled trial. Nutr J 7:1–8

    Article  Google Scholar 

  • Costa RJ, Diniz A, Mantovani MS, Jordao BQ (2008) In vitro study of mutagenic potential of Bidens pilosa Linne and Mikania glomerata Sprengel using the comet and micronucleus assays. J Ethnopharmacol 118:86–93

    Article  Google Scholar 

  • Deba F, Xuan TD, Yasuda M, Tawata S (2007) Herbicidal and fungicidal activities and identification of potential phytotoxins from Bidens pilosa L. var. radiata Scherff. Weed Biol Manag 7:77–83

    Article  CAS  Google Scholar 

  • Deba F, Xuan TD, Yasuda M, Tawata S (2008) Chemical composition and antioxidant; antibacterial and antifungal activities of the essential oils from Bidens pilosa L. var. radiata. Food Control 19:346–352

    Article  CAS  Google Scholar 

  • Devipriya S, Ganapathy V, Shyamaladevi S (2006) Suppression of tumor growth and invasion in 9; 10 dimethyl benz (a) anthracene induced mammary carcinoma by the plant bioflavonoid quercetin. Chem-Biol Interact 162:106–113

    Article  CAS  PubMed  Google Scholar 

  • Dimo T, Kamanyi A, Bopelet M, Rakotonirina S (1996) Attenuation and prevention of salt-induced and spontaneously hypertensive by the aqueous leaf extract of Bidens pilosa L. (Asteraceae) and nifedipine in the rats. Phytomedicine 3:94–95

    Google Scholar 

  • Dimo T, Rakotonirina VS, Kamgang R, Tan VP, Kamanyi A, Bopelet M (1998) Effects of leaf aqueous extract of Bidens pilosa (Asteraceae) on KCL-and noreinephire induced contraction of rat aorta. J Ethnopharmacol 60:179–182

    Article  CAS  PubMed  Google Scholar 

  • Dimo T, Nguelefack TB, Kamtchouing P, Dongo E, Rakotoniria A, Rakotonirina VS (1999) Effets hypotensifs de I’extrait au methanol de Bidens pilosa Linn chez les rats hypertendus. C R Acad Sci 322:323–329

    Article  CAS  Google Scholar 

  • Dimo T, Azay J, Tan PV, Pellecuer J, Cros G, Bopelet M, Serrano JJ (2001) Effects of the aqueous and methylene chloride extracts of Bidens pilosa leaf on fructose-hypertensive rats. J Ethnopharmacol 76:215–221

    Article  CAS  PubMed  Google Scholar 

  • Dimo T, Rakotonirina SV, Tan PV, Azay J, Dongo E, Cros G (2002) Leaf methanol extract of Bidens pilosa prevents and attenuates the hypertension induced by high-fructose diet in Wistar rats. J Ethnopharmaco 83:183–191

    Article  Google Scholar 

  • Dimo T, Nguelefack TB, Tan PV, Yewah MP, Dongo E, Rakotonirina SV, Kamanyi A, Bopelet M (2003) Possible mechanism of action of neutral extract from Bidens pilosa L. leaves on the cardiovascular system of anaesthetized rats. Phytother Res 17:1135–1139

    Article  CAS  PubMed  Google Scholar 

  • Dorsch W, Bittinger M, Kaas A, Muller A, Kreher B, Wagner H (1992) Antiasthmatic effects of Galphimia glauca; gallic acid; and related compounds prevent allergen-and platelet-activating factor-induced bronchial obstruction as well as bronchial hyperreactivity in guinea pigs. Int Arch Allergy Immunol 97:1–7

    Article  CAS  PubMed  Google Scholar 

  • Duarte J, Palencia RP, Vargas F, Ocete MA, Vizcaino FP, Zarzuelo A, Tamargo J (2001) Antihypertensive effects of the flavonoid quercetin in spontaneously hypertensive rats. Br J Pharmacol 133:117–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez J, Reys R, Ponce H, Orpeze M, Vancalsteren MR, Jankowski C, Campos MG (2005) Isoquercitrin from Argemone platyceras inhibits carbachol and leukotriene D4-induced contraction in guinea-pig airways. Eur J Pharmacol 522:108–115

    Article  CAS  PubMed  Google Scholar 

  • Fitzpatrick FD, Hirschfield LS, Ricci T, Jantzen P, Coffey GR (1995) Endothelium-dependent vasorelaxation caused by various plants extracts. J Cardiovasc Pharmacol 26:90–95

    Article  CAS  PubMed  Google Scholar 

  • Fleisher A (1980) Preparation comprising as active ingredients an extract derived from plants of Bidens species or phenylpheptatriyne (natural or synthetic). Israeli I 1:47780

    Google Scholar 

  • Food and Nutrition Division (1997) Agriculture food and nutrition for Africa: a resource book for teachers of agriculture; Publishing Management Group. FAO Information Division, Rome

    Google Scholar 

  • Frida L, Rakotonirina S, Rakotonirina A, Savineau JP (2007) In vivo and in vitro effects of Bidens pilosa L. (Asteraceae) leaf aqueous and ethanol extracts on primed-oestrogenized rat uterine. Afr J Tradit Complement Altern 27:79–91

    Google Scholar 

  • Geissberger P, Sequin U (1991) Constituents of Bidens pilosa L.: Do the components found so far explain the use of this plant in traditional medicine? Acta Trop 48:251–261

    Article  CAS  PubMed  Google Scholar 

  • Goyal MM, Gupta A (1988) Wax composition and antibacterial activity of Kochia scoparia. Fitoterapia 59:145–147

    CAS  Google Scholar 

  • Graham K, Graham EA, Towers GHN (1980) Cercaricidal activity of phenylheptatriyne and α-terthienyl; naturally occurring compounds in species of Asteraceae (compositae). Can J Zool 58:1955–1958

    Article  CAS  Google Scholar 

  • Guaratini GMT, Brandao KLS, Solferini VN, Semir J, Trigo JR (2005) Sequiterpene and polyacetylene profile of the bidens pilosa complex (Asteraceae: Heliantheae) from Southeast of Brazil. Biochem Sys Ecol 33:479–486

    Article  CAS  Google Scholar 

  • Gulcin I, Huyut Z, Elmastas M, Aboul-Enein HY (2010) Radical scavenging and antioxidant activity of tannic acid. Arabian J Chem 3:43–53

    Article  CAS  Google Scholar 

  • Hattori M, Miyachi K, Hada S, Kakiuchi N, Kiuchi F, Tsuda Y, Namba T (1987) Effects of long-chain fatty acids and fatty alcohols on the growth of Streptomyces mutans. Chem Pharm Bull 35:3507–3510

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann B, Hölzl J (1988a) Further acylated chalcones from Bidens pilosa. Planta Med 54:450–451

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann B, Hölzl J (1988b) New chalcones from Bidens pilosa. Planta Med 54:52–54

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann B, Hölzl J (1988c) Methylated chalcone glucoside from Bidens pilosa. Phytochemistry 27:3700–3701

    Article  CAS  Google Scholar 

  • Hoffmann B, Hölzl J (1989a) Acytaled compounds from Bidens pilosa. Planta Med 55:108

    Article  Google Scholar 

  • Hoffmann B, Hölzl J (1989b) Chalcone glucoside from Bidens pilosa. Phytochemistry 28:247–248

    Article  CAS  Google Scholar 

  • Holm LG, Plucknett DL, Pancho JV, Herberger JP (1991) The world’s worse weeds distribution and biology. University Press of Hawaii, Honolulu

    Google Scholar 

  • Horiuchi M, Seyama Y (2006) Anti-inflammatory and anti-allergicactivity of Bidens pilosa L. var. radiata Scherff. J Health Sci 52:711–717

    Article  CAS  Google Scholar 

  • Horiuchi M, Seyama Y (2008) Improvement of the anti-inflammatory and anti-allergic activity of Bidens pilosa L. var. radiata Scherff treated with enzyme (Cellulosine). J Health Sci 54:294–301

    Article  CAS  Google Scholar 

  • Horiuchi M, Wachi H, Seyama Y (2010) Effects of Bidens pilosa L. var. radiata Scherff on the experimental gastric lesion. J Nat Med 64:430–435

    Article  PubMed  Google Scholar 

  • Hsu YJ, Lee TH, Chang CLT, Huang YT, Yang WC (2008) Anti-hyperglycemic effects and mechanism of Bidens pilosa water extract. J Ethnopharmacol 122:379–383

    Article  PubMed  Google Scholar 

  • Hwang YC, Chu JJ, Yang PL, Chen W, Yates MV (2008) Rapid identification of inhibitors that interfere with poliovirus replication using a cell-based assay. Antiviral Res 77:232–236

    Article  CAS  PubMed  Google Scholar 

  • Interaminense LFL, Leal-Cardoso JH, Magalhaes PJC, Duarte GPD, Lahlou S (2005) Enhanced hypotensive effects of the essential oil of Ocimum gratissimum leaves and its main constituent; Eugenol; in DOCA-salt hypertensive conscious rats. Planta Med 71:376–378

    Article  CAS  PubMed  Google Scholar 

  • Iwashita K, Kobori M, Yamaki K, Tsushida T (2000) Flavonoids inhibit cell growth and induce apoptosis in B16 melanoma 4A5 cells. Biosci Biotechnol Biochem 64:1813–1820

    Article  CAS  PubMed  Google Scholar 

  • Jager AK, Hutchings A, Staden J (1996) Screening of Zulu medical plants for prostaglandin-synthesis inhibitors. J Ethnopharmacol 52:95–100

    Article  CAS  PubMed  Google Scholar 

  • Jung CH, Kim JH, Hong MH, Seog HM, Oh SH, Lee PJ, Kim GJ, Kim HM, Um JY, Ko SG (2007) Phenolic-rich fraction from Rhus verniciflua Stokes (RVS) suppress inflammatory response via NF-kB and JNK pathway in lipoposaccharide-induce RAW 267.4 macrophages. J Ethnopharmacol 110:490–497

    Article  PubMed  Google Scholar 

  • Kagan J (1987) Phenylheptatriyne: occurrence, synthesis, biological properties, and environmental concerns. Chemosphere 16:2405–2416

    Article  Google Scholar 

  • Kagan J, Chan G (1983) The photoovicidal activity of plant components towards Drosophila melanogaster. Experientia 39:402–403

    Article  CAS  Google Scholar 

  • Kaij-A-Kamb M, Amoros M, Chulla A, Kaouaoji M, Mariotte A, Girre L (1991) Screening of in vitro antiviral activity from Brittany plants; specially from Centaurea ngra L (Asteraceae). J Pharm Belg 46:325–326

    CAS  PubMed  Google Scholar 

  • Kang HM, Lee AS, Mun YJ, Woo WH, Kim YC, Sohn EJ, Moon MK, Lee HS (2004) Butein ameliorates renal concentrating ability in cisplatin-induced acute renal failure in rats. Biol Pharm Bull 27:366–370

    Article  CAS  PubMed  Google Scholar 

  • Kaur K, Jain M, Kaur T, Jain R (2009) Antimalarials from nature. Bioorg Med Chem 17:3229–3256

    Article  CAS  PubMed  Google Scholar 

  • Khan MP, Kihara M, Omoloso AD (2001) Anti-microbial activity of Bidens pilosa; Bischofia javanica; Elmerillia papuana and Sigesbekia orientalis. Fitoterapia 72:662–665

    Article  CAS  PubMed  Google Scholar 

  • Khanh TD, Cong LC, Xuan TD, Uezato Y, Deba F, Toyama T, Tawata S (2009) Allelopathic plant: 20. Hairy beggarticks (Bidens pilosa). Allelopathy J 24:243–254

    Google Scholar 

  • Klayman DL (1985) Qinghaosu (Artemisinin): an antimalarial drug from China. Science 228:1049–1055

    Article  CAS  PubMed  Google Scholar 

  • Kokwaro JO (1976) Medicinal plants of East Africa. East Africa Literature Bureau; Kampala; Nairobi; Dar es Salaam

  • Krettli AU, Andrade-Neto VF, Brandao MGL, Ferrari WMS (2001) The search for new antimalarial drugs from plants used to treat fever and malaria or plants randomly selected: a review. Mem Inst Oswaldo Cruz 96:1033–1042

    Article  CAS  PubMed  Google Scholar 

  • Kumar JK, Sinha AKA (2003) New disubstituted acetylactone from the leaves of Bidens pilosa LINN. Nat Prod Res 17:71–74

    Article  CAS  PubMed  Google Scholar 

  • Kumari P, Misra K, Sisodia BS, Faridi U, Srivastava S, Luqman S, Darokar MP, Negi AS, Gupta MM, Singh SC, Kumar JKA (2009) Promising anticancer and antimalarial component from leaves of Bidens pilosa. Planta Med 75:59–61

    Article  CAS  PubMed  Google Scholar 

  • Kunkel G (1984) Plants for human consumption. Koeltz Scientific Books, Koenigatein

    Google Scholar 

  • Kusano A, Seyama Y, Usami E, Katayose T, Shibano M, Tsukamoto D, Kisano G (2003) Studies on the antioxidant active constituents of the dried powder from Bidens pilosa L. var. radiata Sch. Nat Med 75:100–104

    Google Scholar 

  • Kviecinski MR, Felipe KB, Schoenfelder T, Wiese LPL, Rossi MH, Goncalez E, Felicio JD, Filho DW, Fedrosa RC (2008) Study of the antitumor potential of Bidens pilosa (Asteraeae) used in Brazilian folk medicine. J Ethnopharmacol 117:69–75

    Article  PubMed  Google Scholar 

  • Lahlou S, Interaminense LFL, Leal-Cardose JH, Duarte GP (2002) Antihypertenisive effects of the essential oil of Apinia zerumbet and its main constituent terpinen-4-ol; in HOCA-salt hypertensive conscious rats. Fundam Clin Pharmacol 17:323–330

    Article  Google Scholar 

  • Lans CA (2006) Ethnomedicines used in Trinidad and Tobago for urinary problems and diabetes mellitus. J Ethnobiol Ethnomed 2:1–11

    Article  Google Scholar 

  • Leandre KK, Claude AKJ, Jacques DY, Flavien T, Etienne EE (2008) β-adrenomimetic actions in the hypotension and vasodilation induced by a chromatographic active fraction from Bidens pilosa L. (Asteraceae) in Mammals. Curr Bioact Comp 4:1–4

    Article  CAS  Google Scholar 

  • Lee JC, Lee KY, Kim J, Na CS, Jung NC, Chung GH, Jang YS (2004a) Extract from Rhus verniciflua Stokes is capable of inhibiting the growth of human lymphoma cell. Food Chem Toxicol 42:1383–1388

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Seo GS, Sohn DH (2004b) Inhibition of lippolysaccharide-induced expression of incucible nitric oxide synthase by butein in RAW 264.7 cells. Biochem Biophys Res Commun 323:125–132

    Article  CAS  PubMed  Google Scholar 

  • Lee HS, Seo GS, Jin XY, Ko G, Sohn DH (2007) Butein blocks tumor necrosis factor α-induced interleukin 8 and matrix metalloproteinase 7 production by inhibiting p38 kinase and osteopontin mediated signaling events in HT-29 cells. Life Sci 81:1535–1543

    Article  CAS  PubMed  Google Scholar 

  • Lee TH, Lu CK, Kuo YH, Lo JM, Le CK (2008) Unexpected novel pheophytin peroxides from the leaves of Bidens pilosa. Helv Chim Acta 91:79–84

    Article  CAS  Google Scholar 

  • Lim SS, Jung SH, Ji J, Shin KH, Keum SR (2001) Syntheis of flavonoids and their effects on aldose reductase and sorbitol accumulation in strptozotocin induced diabetic rat tissues. J Pharm Pharmacol 53:653–668

    Article  CAS  PubMed  Google Scholar 

  • Mably TJ, Marklam KR, Thomas MB (1970) The systematic identification of flavonoids. Springer, New York

    Google Scholar 

  • Macrae WD, Irwin DAJ, Bisapultra T, Towers GHN (1980) Memberane lessions in human erythrocytes induced by the naturally occurring compounds α-terthienyl and phenylheptatriyne. Photobiochem Photobiophys 1:309–318

    CAS  Google Scholar 

  • Magiatis P, Melliou E, Skaltsounis AL, Chinou IB, Mitaku S (1999) Chemical composition and antimicrobial activity of the essential oils of Pistacia lentiscus var. chia. Planta Med 65:749–752

    Article  CAS  PubMed  Google Scholar 

  • Maki M (1966) Glycosides in vegetables. X. Physiological action of flavonoids. Kaseigaku Zasshi 17:266–268

    CAS  Google Scholar 

  • Marchant YY (1985) Polyacetylenes from Bidens, Ph.D. dissertation, University of British Colombia

  • Masuzawa M, Maeda A, Miyata T, Katsuoka K (2005) Effect of Kampo-tea® on preventing ulceration of livedo Reticularis with summer culceration. Nippon Hifuka Gakkai Zasshi 155:7–13 (in Japanese)

    Google Scholar 

  • Matsumoto T, Horiucho M, Kamata K, Seyama Y (2009) Effects of Bidens pilosa L. var. radiata Scherff treated with enzyme on histamine-induced contraction of guinea pig ileum and on histamine release from mast cells. J Smooth Mus Res 45:75–86

    Article  Google Scholar 

  • McDougall B, King PJ, Wu BW, Hostomsky Z, Reinecke MG, Robinson WE Jr (1998) Dicaffeoylquinic and dicaffeoyltartaric acids are selective inhibitors of human immunodeficiency virus type 1 integrase. Antimicrob Agents Chemother 42:140–146

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mclachlan D, Arnason JT, Philogene BJR, Champagne D (1982) Antifeedant activity of the polyacetylenes; phenylheptatriyne (PHT); from Asteraceae to Euxoa messoria [Lepidoptera; Noctuidae]. Experientia 38:1061–1062

    Article  CAS  Google Scholar 

  • Mirvish SS, Rose EF, Sutherland DM (1979) Studies on the esophagus. II. Enhancement of [3H] thymidine incorporation in the rat esophagus by Bidens pilosa (a plant eaten in South Africa) and by croton oil. Cancer Lett 6:159–165

    Article  CAS  PubMed  Google Scholar 

  • Mirvish SS, Salmasi S, Lawson TA, Pour P, Sutherland DM (1985) Test of catechol; tannic acid; Bidens pilosa; croton oil; and phorbol for cocarcinogenesis of esophageal tumors induced in rats by methyl-n-amylnitrosamine. J Natl Cancer Inst 74:1283–1290

    CAS  PubMed  Google Scholar 

  • Mirvish SS, Chu C, Clayson DB (1987) Inhibition of [3H] thymidine incorporation into rat esophageal DNA: Enhancement by Bidens pilosa; a South African vegetable. Proc Am Assoc Cancer Res 19:163

    Google Scholar 

  • Mitich LW (1994) Beggarticks. Weed Technol 8:172–175

    Google Scholar 

  • Moon DO, Kim MO, Choi YH, Hyun JW, Chang WY (2010a) Butein induces G2/M phase arrest and apoptosis in human hepatoma cancer cells through ROS generation. Cancer Lett 288:204–213

    Article  CAS  PubMed  Google Scholar 

  • Moon DO, Choi YH, Moon SK, Kim WJ, Kim GY (2010b) Butein suppresses the expression of nuclear factor-kappa B-mediated matrix metalloproteinase-9 and vascular endothelial growth factor in prostate cancer cells. Toxicol Vitro 24:1927–1934

    Article  CAS  Google Scholar 

  • Morand C, Crepsy V, Manach C, Besson C, Demigne C, Remesy C (1998) Plasma metabolites of quercetin and their antioxidant properties. Am J Physiol-Regul Integr Comp Physiol 275:212–219

    Google Scholar 

  • Moteki H, Hibasami H, Yamada Y, Katsuzaki H, Imai K, Komiya T (2002) Specific induction of apoptosis by 1;8-cineole in two human leukemia cell lines; but not a in human stomach cancer cell line. Oncol Rep 9:757–760

    CAS  PubMed  Google Scholar 

  • Muchuweti M, Mupure C, Ndhlaha AN, Murenje T, Benhura MAN (2007) Screening of antioxidant and radical scavenging activity of Vigna ungiculata; Bidens pilosa and Cleome gynandra. Am J Food Techol 2:161–168

    Article  CAS  Google Scholar 

  • N’Douga M, Balansard G, Babadjamian A, David PT, Gasquet M (1983) Studies on Bidens pilosa L. Identification and antiparasitic activity of 1-phenyl-1;3;5-heptatriyne. Plantes Med Phytother 17:64–75

    Google Scholar 

  • Nakajima S, Kawazu K (1980) Search for insect development inhibitors in plants. Part V. Insect development inhibitors from Coreopsis lanceolata L. Agric Biol Chem 44:1529–1533

    CAS  Google Scholar 

  • Nam S, Smith DM, Dou QP (2001) Tanic acid potentially inhibits tumor cell proteasome activity; increases p27 and Bax expression; and induces G1 arrest and apoptosis. Cancer Epidemiol Biomark Prev 10:1083–1088

    CAS  Google Scholar 

  • Nepka C, Asprodini E, Kouretas D (1999) Tannins: xenobiotic metabolism and cancer chemoprevention in experimental animals. Eur J Drug Metab Phar-Macokinet 24:183–189

    Article  CAS  Google Scholar 

  • Nguelefack TB, Dimo T, Nguelefack Mbuyo EP, Tan PV, Rakotonirina SV, Kamanyi A (2005) Relaxant effects of the neutral extract of the leaves of Bidens pilosa Linn on isolated rat vascular smooth muscle. Phytother Res 19:207–210

    Article  CAS  PubMed  Google Scholar 

  • Nielsen SF, Christensen SB, Cruciani G, Kharazmi A, Lijefors T (1998) Antileishmanial chalcones: statistical design; synthesis; and three-dimensional quantitative structure-activity relationship analysis. J Med Chem 41:4819–4831

    Article  CAS  PubMed  Google Scholar 

  • Nieman C (1954) Influence of trace amounts of fatty acids on the growth of microorganism. Bacteriol Rev 18:147–163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Noumi E, Hounge F, Lontsi D (1999) Traditional medicines in primary health care: plants used for the treatment of hypertension in Bafia; Cameroon. Fitoterapia 70:134–139

    Article  Google Scholar 

  • Ogawa K, Sashida Y (1992) Caffeoyl derivatives of a sugar lactone and its hydroxyl acid from the leaves of Bidens pilosa. Phytochemistry 31:3657–3658

    Article  CAS  Google Scholar 

  • Ogunbinu AO, Flamini G, Cioni PL, Adebayo MA, Ogunwande IA (2009) Constituents of Cajanus cajan (L.) Millps.; Moringa oleifera Lam.; Heliotropium indicum L. and Bidens pilosa L. from Nigeria. Nat Prod Commun 4:573–578

    CAS  PubMed  Google Scholar 

  • Oliveira FQ, Andrade-Neto V, Krettli AU, Brandao MGL (2004) New evidences of antimalarial activity of Bidens pilosa roots extracts correlated with polyacetylene and flavonoids. J Ethnopharmacol 93:39–42

    Article  CAS  PubMed  Google Scholar 

  • Orech FO, Christensen DL, Larsen T, Friis H, Aagaard-Hansen J, Estambale BA (2007) Mineral content of traditional leafy vegetable from western Kenya. Int J Food Sci Nutr 58:595–602

    Article  CAS  PubMed  Google Scholar 

  • Palan PR, Woodall AL, Anderson PS, Mikhail MS (2004) Alpha-tocopherol and alpha-tocopheryl quinine levels in cervical intraepithelial neoplasia and cervical cancer. Am J Obstet Gynecol 190:1407–1410

    CAS  PubMed  Google Scholar 

  • Pattnaik S, Subramanyam VR, Bapaji M, Kole CR (1997) Antibacterial and antifungal activity of aromatic constituents of essential oils. Microbios 89:39–46

    CAS  PubMed  Google Scholar 

  • Pereira RL, Ibrahim T, Lucchetti L, Da Silva AJ, Goncalves de Moraes VL (1999) Immuno suppressive and anti-inflammatory effects of methanolic extract and the polyacetylene isolated from Bidens pilosa L. Int Immunopharmacol 43:31–37

    Article  CAS  Google Scholar 

  • Potawale SE, Shinde VM, Harle UN, Borade SB, Anandi L, Dhalawat HJ, Deshmukh RS (2008) Bidens pilosa L.: a comprehensive review. Pharmacologyonline 2:185–196

    Google Scholar 

  • Priestap HA, Bennett BC (2008) Investigation of the essential oils of Bidens pilosa var. minor; Bidens alba and Flaveria linearis. J Essen Oil Res 2:396–402

    Google Scholar 

  • Rabe T, Van Staden J (1997) Antibacterial activity of South African plants used for medicinal purposes. J Ethnopharmacol 56:81–87

    Article  CAS  PubMed  Google Scholar 

  • Ramanathan R, Tan CH, Das NP (1992) Cytotoxic effect of plant polyphenols and fat-soluble vitamins on malignant human cultured cells. Cancer Lett 62:217–224

    Article  CAS  PubMed  Google Scholar 

  • Ramos A, Visozo A, Piloto A, Garcia A, Rodriguez CA, Rivero R (2003) Screening of antimutagenicity via antioxidant activity in Cuban medical plant. J Ethnopharmacol 87:241–246

    Article  CAS  PubMed  Google Scholar 

  • Redl K, Breu W, Davis B, Bauer R (1994) Anti-inflammatory active polyacetylens from Bidens campylotheca. Planta Med 60:58–62

    Article  CAS  PubMed  Google Scholar 

  • Rogerio A, Kanashiro A, Fontanari C, Da Silva EVG, Lucisano-Valim YM, Soares EG, Faccioli LH (2007) Anti-inflammatory activity of quercetin and isoquercitrin in experimental murine allergic asthma. Inflamm Res 56:402–408

    Article  CAS  PubMed  Google Scholar 

  • Rojas JJ, Ochoa VJ, Ocampo SA, Munoz JF (2006) Screening for antimicrobial activity of ten medicinal plants used in Colombian folkloric medicine: A possible alternative in the treatment of non-nosocomial infections. BMC Complement Altern Med 6:1–6

    Article  Google Scholar 

  • Rose JA, Kasum CM (2002) Dietary flavonoids: bioavailability; metabolic effects; and safety. Annu Rev Nutr 22:19–34

    Article  CAS  Google Scholar 

  • Santos AS, Niero R, Filho VV, Yunes RA, Pizzolatti MG, Monache FD, Calixto JB (1995) Antinociceptive proterties of phytosterols isolated from Phyllanthus corcovadensis in mice. Planta Med 61:329–332

    Article  CAS  PubMed  Google Scholar 

  • Sarg TM, Ateva AM, Farraq NM, Abbas FA (1991) Constituents and biological activity of Bidens pilosa L. grown in Egypt. Acta Pharm Hung 61:317–323

    CAS  PubMed  Google Scholar 

  • Sarker SD, Bartholomew B, Nash RJ, Robinson N (2000) 5-O-methylhoslundin: an unusual flavonoid from Bidens pilosa (Asteraceae). Biochem Syst Ecol 38:591–593

    Article  Google Scholar 

  • Sashida Y, Ogawa K, Kitada M, Karikome H, Mimaki Y, Shimomura H (1991) New aurone glucosides and new phenylpropanoid glucosides from Bidens pilosa. Chem Pharm Bull 39:709–711

    Article  CAS  Google Scholar 

  • Seelinger G, Merfort I, Wolfle T, Schempp CM (2008a) Anti-carcinogenic effects of the flavonoid luteolin. Molecules 13:2628–2651

    Article  CAS  PubMed  Google Scholar 

  • Seelinger G, Merfort I, Schempp CM (2008b) Anti-oxidant; anti-inflammatory and anti-allergic activities of luteolin. Planta Med 74:1667–1677

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Noguchi N, Niki E (1999) Comparative study on dynamics of antoxidant action of α-tocopheryl hydroquinone; ubiquinol; and α-tocopherol against lipid perxidation. Free Radical Bio Med 27:334–346

    Article  CAS  Google Scholar 

  • Siddiq A, Dembitsky V (2008) Acetylenic anticancer agents. Anticancer Agent Med Chem 8:132–170

    Article  CAS  Google Scholar 

  • Silva FJF, Fischer DCH, Tavares JF, Bilva MS, Athayde-filho PF, Barbosa-filho JM (2011) Compilation of secondary metabolites from Bidens pilosa L. Molecules 16:1070–1102

    Article  CAS  PubMed  Google Scholar 

  • Sinmonetti P, Gardana C, Pietta P (2001) Plasma levels of caffeic acid and antioxidant status after red wine intake. J Agric Food Chem 49:5964–5968

    Article  CAS  Google Scholar 

  • Sokmen A, Vardar-Unlu G, Polissiou M, Daferera D, Sokmen M, Donmez E (2003) Antimicrobial activity of essential oils and methanol extracts of Achillea sintenisii Hub Mor. (Asteraceae). Phytothe Res 17:1005–1010

    Article  CAS  Google Scholar 

  • Spencer CF, Koniuszi FR, Rogers EF, JrJ Shavel, Easton NR, Kaczka EA, JrFA Kuehl, Phillips RF, Walt A, Folker K (1947) Survey of plants for antimalarial activity. Lloydia 10:145–147

    Google Scholar 

  • Subhuti D (2013) Bidens: a popular remedy escapes notice of western practitioner, http://www.itmonline.org/arts/bidens.htm

  • Suffness M, Pezzuto JM (1991) Assays related to cancer drug discovery. In: Hostettmann K (ed) Methods in plant biochemistry. Academic Press, London

    Google Scholar 

  • Sun YB, Zhou QX, Liu WT, An J, Xu ZQ, Wang L (2009) Join effects of arsenic and cadmium on plant growth and metal bioaccumulation: a potential Cd-hyperaccumulator and as-excluder Bidens pilosa. J Hazard Mater 165:1023–1028

    Article  CAS  PubMed  Google Scholar 

  • Sundararajan P, Dey A, Smith A, Doss AG, Rajappan M, Nararajan S (2006) Studies of anticancer and antipyretic activity of Bidens pilosa whole plant. Afr Health Sci 6:27–30

    PubMed  PubMed Central  Google Scholar 

  • Suzigan MI, Battochio APR, Coelho KLR (2009) An acqueous extract of Bidens pilosa L. protects liver from cholestatic disease. Experimental study in young rats. Acta Cir Bras 24:327–352

    Article  Google Scholar 

  • Tan PV, Dimo T, Dongo E (2000) Effects of methanol; cyclohexane and methylene chloride extracts of Bidens pilosa on various gastric ulcer models in rats. J Ethnopharmaco 73:415–421

    Article  CAS  Google Scholar 

  • Taylor L (2015) The healing power of rainforest herb, http://rain-tree.com/picaopreto.htm

  • Tescheke R, Wolff A, Frezel C, Eichkoff A, Schulze J (2015) Herbal traditional Chinese medicine and its evidence base in gastrointestinal disorders. W J Gastroenterol 21:4466–4490

    Google Scholar 

  • Tewtrakul S, Miyashiro H, Nakamura N, Hattori M, Kawahata T, Otake T, Yoshinaga T, Fujiwara T, Supavita T, Yuenyongsawad S, Rattanasuwon P, Daj-Adisai S (2003) HIV-1 integrase inhibitory substances from Coleus parvifolius. Phytother Res 17:232–239

    Article  CAS  PubMed  Google Scholar 

  • Tobinaga S, Sharma MK, Aalbersberg WGL, Watanabe K, Iguchi K, Narui K, Sadatsu M, Waki S (2009) Isolation and identification of a potent antimalarial and antibacterial polyacetylene from Bidens pilosa. Planta Med 75:624–628

    Article  CAS  PubMed  Google Scholar 

  • Tomczykowa M, Tomczyk M, Jakoniuk P (2008) Tryniszewska, E. Antimicrobial and antifungal activities of the extracts and essential oils of Bidens tripartite. Folia Histochem Cytobiol 46:389–393

    Article  PubMed  Google Scholar 

  • Towers GHN, Wat CK (1978) Biological activity of polyacetylenes. Rev Latinoamer Quim 9:162–170

    CAS  Google Scholar 

  • Towers GHN, Wat CK, Graham EA, Bandoni RJ, Chan GFQ, Mitchell JC, Lam J (1977) Ultraviolet-mediated antibiotic activity of species of Compositae caused by polyacetylenic compounds. Lloydia 40:487–498

    CAS  PubMed  Google Scholar 

  • Towers GHH, Arnason T, Wat CK, Graham EA, Lam J, Mitchell JC (1979) Phototoxic polyacetylenes and their thiophene derivatives (effects on human skin). Contact Dermatitis 5:140–144

    Article  CAS  PubMed  Google Scholar 

  • Towers GHN, Arnason CK, Wat CK, Lambert JD (1984) Controlling pests using a naturally occurring conjugated polyacetylen. Canadian Patent CA 1173743 AL

  • Ubillas RP, Mendez CD, Jolad SD, Luo J, King SR, Carlson TJ, Fort DM (2000) Antihyperglycemic acetylenic glucosides from Bidens pilosa. Planta Med 66:82–83

    Article  CAS  PubMed  Google Scholar 

  • Uchoa VT, Paula RC, Krettli LG, Stantana AEG, Kretli AU (2010) Antimalarial activity of compounds and mixed fractions of Cecropia pachystachya. Drug Develop Res 71:82–91

    CAS  Google Scholar 

  • Uusiku NP, Oelofse A, Duodu KG, Bester MJ, Faber M (2010) Nutritional value of leafy vegetable of sub-Sahara African and their potential contribution to human health: a review. J Food Compos Anal 23:499–509

    Article  CAS  Google Scholar 

  • Valdes HAL, Rego HPL (2001) Bidens pilosa Linne. Revista Cub Planta Med 1:28–33

    Google Scholar 

  • Van Puyvelde L, Ntawukiliyayo JD, Portaels F (1994) In vitro inhibition of mycrobacteria by Rwandese medicinal plants. Phytother Res 8:65–69

    Article  Google Scholar 

  • Vuong PV, Ky PT, Luong HV, Long NV (2015) Study of isolation and determined structure of kaempferol 3-(2;3-di-E-p-coumaroyl-a-l-rhamnopyranoside from Bidens pilosa L. J. Military Pharmmed. http://vmmu.edu.vn/QLtapchi/baiviet.aspx?mabv=183

  • Wagner H (1980) Pharmazeutische Biologie 2, Drogen und ihre Inhaltsstoffe. Gustaw Fischer Verlag, Stuttgart, NY

    Google Scholar 

  • Wang J, Yang H, Lin ZW, Sun HD (1997) Flavonoids from Bidens pilosa var. radiata. Phytochemistry 46:1275–1278

    Article  CAS  Google Scholar 

  • Wang Y, Chan FL, Chen S, Leung LK (2005) The plant polyphenol butein inhibits testosterone-induced proliferation in breast cancer cells expressing aromatase. Life Sci 77:39–51

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Wu QX, Shi YP (2010) Polyacetylenes and flavonoids from the aerial parts of Bidens pilosa. Planta Med 76:893–896

    Article  CAS  PubMed  Google Scholar 

  • Wat CT, Biswas RK, Graham EA, Bohm L, Tower GHN, Waygood ER (1979) Ultraviolet-mediated cytotoxic activity of phenelheptatriyne from Bidens pilosa L. J Nat Prod 42:103–111

    Article  CAS  PubMed  Google Scholar 

  • WHO (World Health Organization) (2000) Tropical disease research division. WHO, Geneva

    Google Scholar 

  • Wong-Leung YL (1988) Antibacterial activities of some Hong Kong plants used in Chinese medicine. Fitoterapia 59:11–16

    Google Scholar 

  • Wu LW, Chiang YM, Chuang HC, Wang SY, Yang GW, Chen YH, Lai LY, Shyur LF (2004) Polyacetylenes function as anti–angiogenic agents. Pharm Res 21:2112–2119

    Article  CAS  PubMed  Google Scholar 

  • Wu LW, Chiang YM, Chuang HC, Lo CP, Yang KY, Wang SY, Shyur LF (2007) A novel polyacetylenes significantly inhibits angiogenesis and promotes apoptosis in human endothelial cells through activation of the CDK inhibitors and caspase–7. Planta Med 73:655–661

    Article  CAS  PubMed  Google Scholar 

  • Xu HX, Wan M, Dong H, But PP, Foo LY (2000) Inhibitory activity of flavonoids and tannins against HIV-1 protaese. Biol Pharm Bull 23:1072–1076

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Chen SC, Chang NW, Chang JM, Lee ML, Tsai PC, Fu HH, Kao WW, Chiang HC, Wang HH, Hseu YC (2006) Protection from oxidative damage using Bidens pilosa extracts in normal human erythrocytes. Food Chem Toxicol 44:1513–1521

    Article  CAS  PubMed  Google Scholar 

  • Yi L, Li ZQ, Yuan KH, Qu XX, Chen J, Wang GW, Zhang H, Luo HP, Zhu LL, Jiang PF, Chen LR, Shen Y, Luo M, Zuo GY, Hu JH, Duan DL, Nie YC, Shi XL, Wang W, Han Y, Li TS, Liu YQ, Ding MX, Deng HK, Xu XJ (2004) Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. J Virol 78:11334–11339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yit CC, Das NP (1994) Cytotoxic effect of butein on human colon adenocarcinoma cell proliferation. Cancer Lett 82:57–72

    Article  Google Scholar 

  • Yoshida N, Kanekura T, Higashi Y, Kanzaki T (2006) Bidens pilosa suppresses interleukin-1 β-induced cyclooxygenase-2 expression through the inhibition of mitogen activated protein kinases phosphorylation in normal human dermal fibroblast. J Dermatol 33:676–683

    Article  CAS  PubMed  Google Scholar 

  • Young PH, Hsu YJ, Yang WC (2010) Bidens pilosa L and its medicinal use., Series of recent progress in medicinal plant: 28Studium Press, Goodluck, WCY, pp 411–426

    Google Scholar 

  • Yuan LP, Chen FH, Ling L, Dou PF, Bo H, Zhong MM, Xia LJY (2008) Protective effects of total flavonoids of Bidens pilosa L. (TFB) on animal liver injury and liver fibrosis. J Ethnopharmacol 116:539–546

    Article  CAS  PubMed  Google Scholar 

  • Zeng RS, Luo SM (1995) Relationship between allelopathic effects of Bidens pilosa aqueous extracts and rainfall. J South China Agric Uni 16:69–72

    Google Scholar 

  • Zhang S (1989) Treatment of 500 cases of dysentery with Bidens tripartite. Shandong J Tradit Chin Med 8:11–12

    Google Scholar 

  • Zhao AH, Zhao QS, Peng LY, Zhang JX, Lin ZW, Sun HAD (2004) New chalcone glycoside from Bidens pilosa. Acta Bot Yunnanica 26:121–126

    CAS  Google Scholar 

  • Zollo PHA, Kuiate JR, Menut C, Lamaty G, Bessiere JM, Chalchat JC, Garry RP (1995) Aromatic plants of tropical central Africa. Part XX. The occurrence of 1-phenylhepta-1;3;5-triyne in the essential oil of Bidens pilosa L. from Camaroon. Flavour Frag J 10:97–100

    Article  CAS  Google Scholar 

  • Zulueta MCA, Tada M, Ragasa CY (1995) A diterpene from Bidens pilosa. Phytochemistry 38:449–450

    Article  Google Scholar 

Download references

Acknowledgments

The authors (T.D. Xuan, T.D. Khanh) declare that they do not have conflict of interest. Thanks are also due to James Davis Reimer (Transdisciplinary Subtropical Research Organization, University of the Ryukyus, Japan), Do Tan Khang, Phung Thi Tuyen, La Hoang Anh, and Do Tuan Bach for their constructive efforts to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tran Dang Xuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xuan, T.D., Khanh, T.D. Chemistry and pharmacology of Bidens pilosa: an overview. Journal of Pharmaceutical Investigation 46, 91–132 (2016). https://doi.org/10.1007/s40005-016-0231-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-016-0231-6

Keywords

Profiles

  1. Tran Dang Xuan