Skip to main content

Advertisement

Log in

Phage therapy as a glimmer of hope in the fight against the recurrence or emergence of surgical site bacterial infections

  • Review
  • Published:
Infection Aims and scope Submit manuscript

Abstract

Purpose

Over the last decade, surgery rates have risen alarmingly, and surgical-site infections are expanding these concerns. In spite of advances in infection control practices, surgical infections continue to be a significant cause of death, prolonged hospitalization, and morbidity. As well as the presence of bacterial infections and their antibiotic resistance, biofilm formation is one of the challenges in the treatment of surgical wounds.

Methods

This review article was based on published studies on inpatients and laboratory animals receiving phage therapy for surgical wounds, phage therapy for tissue and bone infections treated with surgery to prevent recurrence, antibiotic-resistant wound infections treated with phage therapy, and biofilm-involved surgical wounds treated with phage therapy which were searched without date restrictions.

Results

It has been shown in this review article that phage therapy can be used to treat surgical-site infections in patients and animals, eliminate biofilms at the surgical site, prevent infection recurrence in wounds that have been operated on, and eradicate antibiotic-resistant infections in surgical wounds, including multi-drug resistance (MDR), extensively drug resistance (XDR), and pan-drug resistance (PDR). A cocktail of phages and antibiotics can also reduce surgical-site infections more effectively than phages alone.

Conclusion

In light of these encouraging results, clinical trials and research with phages will continue in the near future to treat surgical-site infections, biofilm removal, and antibiotic-resistant wounds, all of which could be used to prescribe phages as an alternative to antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Chopra H, Islam MA, Sharun K, Emran TB, Al-Tawfiq JA, Dhama K. Recent advances in the treatment of biofilms induced surgical site infections. Int J Surg. 2023;109:65–7.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hrynyshyn A, Simões M, Borges A. Biofilms in surgical site infections: recent advances and novel prevention and eradication strategies. Antibiotics. 2022;11:69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mora-Guzman I, Rubio-Perez I, González RM, Garcia DD, Martin-Perez E. Surgical Site Infection by Carbapenemase-producing Enterobacteriaceae: a challenge for today’s surgeons. Cirugía Española (English Edition). 2020;98:342–9.

    Article  Google Scholar 

  4. Menz BD, Charani E, Gordon DL, Leather AJ, Moonesinghe SR, Phillips CJ. Surgical antibiotic prophylaxis in an era of antibiotic resistance: common resistant bacteria and wider considerations for practice. Infection and Drug Resistance. 2021:5235–52.

  5. Cesta N, Pini M, Mulas T, Materazzi A, Ippolito E, Wagemans J, et al., editors. Application of phage therapy in a case of a chronic hip-prosthetic joint infection due to Pseudomonas aeruginosa: an Italian real-life experience and in vitro analysis. Open Forum Infectious Diseases; 2023: Oxford University Press US.

  6. Santamaría-Corral G, Senhaji-Kacha A, Broncano-Lavado A, Esteban J, García-Quintanilla M. Bacteriophage-antibiotic combination therapy against pseudomonas aeruginosa. Antibiotics. 2023;12:1089.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Metsemakers W-J, Onsea J, Moriarty TF, Pruidze N, Nadareishvili L, Dadiani M, Kutateladze M. Bacteriophage therapy for human musculoskeletal and skin/soft tissue infections. Clin Microbiol Infect. 2023.

  8. Taati Moghadam M, Amirmozafari N, Shariati A, Hallajzadeh M, Mirkalantari S, Khoshbayan A, Masjedian Jazi F. How phages overcome the challenges of drug resistant bacteria in clinical infections. Infect Drug Resistance. 2020:45–61.

  9. Mousavi SM, Babakhani S, Moradi L, Karami S, Shahbandeh M, Mirshekar M, et al. Bacteriophage as a novel therapeutic weapon for killing colistin-resistant multi-drug-resistant and extensively drug-resistant gram-negative bacteria. Curr Microbiol. 2021:1–14.

  10. Moghadam MT, Chegini Z, Norouzi A, Dousari AS, Shariati A. Three-decade failure to the eradication of refractory Helicobacter pylori infection and recent efforts to eradicate the infection. Curr Pharm Biotechnol. 2021;22:945–59.

    Article  CAS  PubMed  Google Scholar 

  11. Centers for Disease Control and Prevention (CDC); National Healthcare Safety Network (NHSN). https://www.cdc.gov/nhsn/psc/ssi/index.html. Accessed on 9 Sept 2021. 2021.

  12. Weiss AJE, A.; Andrews, R.M. Characteristics of Operating Room Procedures in U.S. Hospitals, 2011; Statistical Brief, No. 170; Agency for Healthcare Research and Quality: Rockville, MD, USA, 2014. https://www.hcup-us.ahrq.gov/reports/statbriefs/sb170-Operating-Room-Procedures-United-States-2011.pdf. Accessed on 9 Sept 2021. 2021.

  13. McDermott KW, Freeman WJ, Elixhauser A. Overview of operating room procedures during inpatient stays in US hospitals, 2014: statistical brief# 233. 2018.

  14. European Centre for Disease Prevention and Control. Healthcare-Associated Infections: Surgical Site Infections; Annual Epidemiological Report for 2017; European Centre for Disease Prevention and Control: Stockholm, Sweden, 2019. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/AER_for_2017-SSI.pdf. 2017.

  15. Kolasiński W. Surgical site infections–review of current knowledge, methods of prevention. Polish J Surg. 2019;91:41–7.

    Google Scholar 

  16. Krezalek MA, Hyoju S, Zaborin A, Okafor E, Chandrasekar L, Bindokas V, et al. Can methicillin-resistant Staphylococcus aureus silently travel from the gut to the wound and cause postoperative infection? Modeling the “Trojan Horse Hypothesis.” Ann Surg. 2018;267:749–58.

    Article  PubMed  Google Scholar 

  17. Garvin KL, Miller RE, Gilbert TM, White AM, Lyden ER. Late reinfection may recur more than 5 years after reimplantation of THA and TKA: analysis of pathogen factors. Clin Orthop Relat Res. 2018;476:345.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Nobuhara H, Yanamoto S, Funahara M, Matsugu Y, Hayashida S, Soutome S, et al. Effect of perioperative oral management on the prevention of surgical site infection after colorectal cancer surgery: A multicenter retrospective analysis of 698 patients via analysis of covariance using propensity score. Medicine. 2018;97(40).

  19. Robson MC. Wound infection: a failure of wound healing caused by an imbalance of bacteria. Surg Clin North Am. 1997;77:637–50.

    Article  CAS  PubMed  Google Scholar 

  20. Cochran AR, Ong KL, Lau E, Mont MA, Malkani AL. Risk of reinfection after treatment of infected total knee arthroplasty. J Arthroplasty. 2016;31:156–61.

    Article  PubMed  Google Scholar 

  21. Sartelli M, C. Hardcastle T, Catena F, Chichom-Mefire A, Coccolini F, Dhingra S, et al. Antibiotic use in low and middle-income countries and the challenges of antimicrobial resistance in surgery. Antibiotics. 2020;9(8):497.

  22. Hope D, Ampaire L, Oyet C, Muwanguzi E, Twizerimana H, Apecu RO. Antimicrobial resistance in pathogenic aerobic bacteria causing surgical site infections in Mbarara regional referral hospital. Southwestern Uganda Sci Rep. 2019;9:1–10.

    CAS  Google Scholar 

  23. Adrien HM, Alexandre AS, Romaric TS, Fanny H-a, Holden FO, Bio TS, et al. Risk factors of surgical site infection at the regional and teaching hospital center of borgou (BENIN). Int J Clin Biomed Res. 2017:1–4.

  24. Iskandar K, Sartelli M, Tabbal M, Ansaloni L, Baiocchi GL, Catena F, et al. Highlighting the gaps in quantifying the economic burden of surgical site infections associated with antimicrobial-resistant bacteria. World J Emergency Surg. 2019;14:1–14.

    Article  Google Scholar 

  25. Labricciosa FM, Sartelli M, Correia S, Abbo LM, Severo M, Ansaloni L, et al. Emergency surgeons’ perceptions and attitudes towards antibiotic prescribing and resistance: a worldwide cross-sectional survey. World J Emergency Surg. 2018;13:1–9.

    Article  Google Scholar 

  26. de Kraker ME, Stewardson AJ, Harbarth S. Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Med. 2016;13: e1002184.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fanny MA, Holden FO, Bio T-S, Robert A, Felix AS, Yves DA, Delphin MK. Epidemiological aspects of surgical site infections in an income country: the case of regional hospital centre, Borgou (Benin). Health Sci. 2017;6:29–33.

    Google Scholar 

  28. Foschi D, Yakushkina Ao, Cammarata F, Lamperti G, Colombo F, Rimoldi S, et al. Surgical site infections caused by multi-drug resistant organisms: a case–control study in general surgery. Updates Surg. 2022;74(5):1763–71.

  29. Badia JM, Casey AL, Rubio-Pérez I, Crosby C, Arroyo-García N, Balibrea JM. A survey to identify the breach between evidence and practice in the prevention of surgical infection: Time to take action. Int J Surg. 2018;54:290–7.

    Article  PubMed  Google Scholar 

  30. Sartelli M, Kluger Y, Ansaloni L, Coccolini F, Baiocchi GL, Hardcastle TC, et al. Knowledge, awareness, and attitude towards infection prevention and management among surgeons: identifying the surgeon champion. World J Emergency Surg. 2018;13:1–6.

    Article  Google Scholar 

  31. NIH Guide: Research on Microbial Biofilms. Available online: https://grants.nih.gov/grants/guide/pa-files/pa-03-047.html. Accessed on 30 Oct 2021.

  32. Moghadam MT, Chegini Z, Khoshbayan A, Farahani I, Shariati A. Helicobacter pylori biofilm and new strategies to combat it. Curr Mol Med. 2021;21:549–61.

    CAS  PubMed  Google Scholar 

  33. Wolcott R, Cutting KF, Dowd S. Surgical site infections: biofilms, dehiscence and delayed healing. Wounds UK. 2008;4:108–13.

    Google Scholar 

  34. Verderosa AD, Totsika M, Fairfull-Smith KE. Bacterial biofilm eradication agents: a current review. Front Chem. 2019;7:824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Edmiston CE, McBain A, Kiernan M, Leaper D. A narrative review of microbial biofilm in postoperative surgical site infections: clinical presentation and treatment. J Wound Care. 2016;25:693–702.

    Article  CAS  PubMed  Google Scholar 

  36. Dhar Y, Han Y. Current developments in biofilm treatments: wound and implant infections. Eng Regeneration. 2020;1:64–75.

    Article  Google Scholar 

  37. Darvishi S, Tavakoli S, Kharaziha M, Girault HH, Kaminski CF, Mela I. Advances in the sensing and treatment of wound biofilms. Angew Chem Int Ed. 2022;61: e202112218.

    Article  CAS  Google Scholar 

  38. Wu H, Moser C, Wang H-Z, Høiby N, Song Z-J. Strategies for combating bacterial biofilm infections. Int J Oral Sci. 2015;7:1–7.

    Article  PubMed  Google Scholar 

  39. Miller KE, Hontanilla B, Cabello A, Marre D, Armendariz L, Leiva J. The effect of late infection and antibiotic treatment on capsular contracture in silicone breast implants: a rat model. J Plast Reconstr Aesthet Surg. 2016;69:70–6.

    Article  PubMed  Google Scholar 

  40. Koo H, Allan RN, Howlin RP, Stoodley P, Hall-Stoodley L. Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Rev Microbiol. 2017;15:740–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ribeiro JR. Opportunities and regulatory challenges of phage therapy 2023.

  42. Kaur R, Sethi N. Phage therapy as an alternative treatment in the fight against AMR: Real-world problems and possible futures. Emerging modalities in mitigation of antimicrobial resistance: Springer; 2022. 357–74.

  43. Jeschke P, Starikov EB. Agricultural Biocatalysis: Biological and Chemical Applications: CRC Press; 2022.

  44. Wallenborn JT, Vonaesch P. Intestinal microbiota research from a global perspective. Gastroenterol Report. 2022; 10:goac010.

  45. Jamil T, Mehmood A, Farhan M, Kalim F, Hadi F, Younas K, et al. Bacteriophage therapy: effective antibiotic replacer against emerging ghost of antimicrobial resistant bacteria. One Health Triad, Unique Scientific Publishers, Faisalabad, Pakistan. 2023;1:158–67.

    Google Scholar 

  46. Ioannou P, Baliou S, Samonis G. Bacteriophages in infectious diseases and beyond—a narrative review. Antibiotics. 2023;12(6):1012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sharma N, Chhillar AK, Dahiya S, Punia A, Choudhary P, Gulia P, et al. Chemotherapeutic Strategies for Combating Staphylococcus aureus Infections. Mini Rev Med Chem. 2022;22(1):26–42.

    Article  CAS  PubMed  Google Scholar 

  48. Khalid A, Lin RC, Iredell JR. A phage therapy guide for clinicians and basic scientists: background and highlighting applications for developing countries. Front Microbiol. 2021;11: 599906.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Royer S, Morais AP, da Fonseca Batistão DW. Phage therapy as strategy to face post-antibiotic era: a guide to beginners and experts. Arch Microbiol. 2021;203:1271–9.

    Article  CAS  PubMed  Google Scholar 

  50. Caflisch KM, Suh GA, Patel R. Biological challenges of phage therapy and proposed solutions: a literature review. Expert Rev Anti Infect Ther. 2019;17:1011–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liang S, Qi Y, Yu H, Sun W, Raza SHA, Alkhorayef N, et al. bacteriophage therapy as an application for bacterial infection in China. Antibiotics. 2023;12:417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Letarov A, Kulikov E. Adsorption of bacteriophages on bacterial cells. Biochem Mosc. 2017;82:1632–58.

    Article  CAS  Google Scholar 

  53. Dion MB, Oechslin F, Moineau S. Phage diversity, genomics and phylogeny. Nat Rev Microbiol. 2020;18:125–38.

    Article  CAS  PubMed  Google Scholar 

  54. Ackermann H-W. Phage classification and characterization. Bacteriophages: Methods and protocols, volume 1: Isolation, characterization, and interactions. 2009:127–40.

  55. Tolstoy I, Kropinski AM, Brister JR. Bacteriophage taxonomy: an evolving discipline. Bacteriophage Therapy: From Lab to Clinical Practice. 2018:57–71.

  56. Hatfull GF, Hendrix RW. Bacteriophages and their genomes. Curr Opin Virol. 2011;1:298–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hitchcock NM, Devequi Gomes Nunes D, Shiach J, Valeria Saraiva Hodel K, Dantas Viana Barbosa J, Alencar Pereira Rodrigues L, et al. Current Clinical Landscape and Global Potential of Bacteriophage Therapy. Viruses. 2023;15:1020.

  58. GenBank, Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information. Available online: https://www.ncbi.nlm.nih.gov/nuccore. Accessed on 12 Apr 2023.

  59. SEA-PHAGES HHMI Science Education Alliance-Phage Hunters Advancing Genomics and Evolutionary Science Program. https://seaphages.org. Accessed on 9 Feb 2023.

  60. Mavrich TN, Hatfull GF. Bacteriophage evolution differs by host, lifestyle and genome. Nat Microbiol. 2017;2:1–9.

    Article  Google Scholar 

  61. Dunstan RA, Bamert RS, Belousoff MJ, Short FL, Barlow CK, Pickard DJ, et al. Mechanistic insights into the capsule-targeting depolymerase from a Klebsiella pneumoniae bacteriophage. Microbiol Spectrum. 2021;9:e01023-e1121.

    Article  CAS  Google Scholar 

  62. Stone E, Campbell K, Grant I, McAuliffe O. Understanding and exploiting phage–host interactions. Viruses. 2019;11:567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dunne M, Hupfeld M, Klumpp J, Loessner MJ. Molecular basis of bacterial host interactions by Gram-positive targeting bacteriophages. Viruses. 2018;10:397.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kortright KE, Chan BK, Koff JL, Turner PE. Phage therapy: a renewed approach to combat antibiotic-resistant bacteria. Cell Host Microbe. 2019;25:219–32.

    Article  CAS  PubMed  Google Scholar 

  65. Pfeifer E, Bonnin RA, Rocha EP. Phage-Plasmids spread antibiotic resistance genes through infection and lysogenic conversion. MBio. 2022;13:e01851-e1922.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Principi N, Silvestri E, Esposito S. Advantages and limitations of bacteriophages for the treatment of bacterial infections. Front Pharmacol. 2019;10:513.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Lerminiaux NA, Cameron AD. Horizontal transfer of antibiotic resistance genes in clinical environments. Can J Microbiol. 2019;65:34–44.

    Article  CAS  PubMed  Google Scholar 

  68. Riedel S, Hobden J, Miller S, Morse S, Mietzner T, Detrick B, et al. Microbial Genetics. Jawetz, Melnick, & Adelberg’s Medical Microbiology; McGraw Hill: New York, NY, USA. 2019.

  69. Żbikowska K, Michalczuk M, Dolka B. The use of bacteriophages in the poultry industry. Animals. 2020;10:872.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Ledsgaard L, Kilstrup M, Karatt-Vellatt A, McCafferty J, Laustsen AH. Basics of antibody phage display technology. Toxins. 2018;10:236.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Boeckaerts D, Stock M, De Baets B, Briers Y. Identification of phage receptor-binding protein sequences with hidden markov models and an extreme gradient boosting classifier. Viruses. 2022;14:1329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Boeckaerts D, Stock M, Criel B, Gerstmans H, De Baets B, Briers Y. Predicting bacteriophage hosts based on sequences of annotated receptor-binding proteins. Sci Rep. 2021;11:1467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Floccari VA, Dragoš A. Host control by SPβ phage regulatory switch as potential manipulation strategy. Curr Opin Microbiol. 2023;71: 102260.

    Article  CAS  PubMed  Google Scholar 

  74. White K, Yu J-H, Eraclio G, Dal Bello F, Nauta A, Mahony J, van Sinderen D. Bacteriophage-host interactions as a platform to establish the role of phages in modulating the microbial composition of fermented foods. Microbiome Res Reports. 2022:1–19.

  75. de Jonge PA, Nobrega FL, Brouns SJ, Dutilh BE. Molecular and evolutionary determinants of bacteriophage host range. Trends Microbiol. 2019;27:51–63.

    Article  PubMed  Google Scholar 

  76. Melo LD, Oliveira H, Pires DP, Dabrowska K, Azeredo J. Phage therapy efficacy: a review of the last 10 years of preclinical studies. Crit Rev Microbiol. 2020;46:78–99.

    Article  CAS  PubMed  Google Scholar 

  77. El Haddad L, Harb CP, Gebara MA, Stibich MA, Chemaly RF. A systematic and critical review of bacteriophage therapy against multidrug-resistant ESKAPE organisms in humans. Clin Infect Dis. 2019;69:167–78.

    Article  PubMed  Google Scholar 

  78. Nadareishvili L, Hoyle N, Nakaidze N, Nizharadze D, Kutateladze M, Balarjishvili N, et al. Bacteriophage therapy as a potential management option for surgical wound infections. Phage. 2020;1:158–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hassannia M, Naderifar M, Salamy S, Akbarizadeh MR, Mohebi S, Moghadam MT. Engineered phage enzymes against drug-resistant pathogens: a review on advances and applications. Bioprocess and Biosystems Engineering. 2023:1–12.

  80. Boroujeni MB, Mohebi S, Malekian A, Shahraeini SS, Gharagheizi Z, Shahkolahi S, et al. The therapeutic effect of engineered phage, derived protein and enzymes against superbug bacteria. Biotechnology and Bioengineering. 2023.

  81. Regeimbal JM, Jacobs AC, Corey BW, Henry MS, Thompson MG, Pavlicek RL, et al. Personalized therapeutic cocktail of wild environmental phages rescues mice from Acinetobacter baumannii wound infections. Antimicrob Agents Chemother. 2016;60:5806–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Morris JL, Letson HL, Elliott L, Grant AL, Wilkinson M, Hazratwala K, McEwen P. Evaluation of bacteriophage as an adjunct therapy for treatment of peri-prosthetic joint infection caused by Staphylococcus aureus. PLoS ONE. 2019;14: e0226574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Leitner L, Ujmajuridze A, Chanishvili N, Goderdzishvili M, Chkonia I, Rigvava S, et al. Intravesical bacteriophages for treating urinary tract infections in patients undergoing transurethral resection of the prostate: a randomised, placebo-controlled, double-blind clinical trial. Lancet Infect Dis. 2021;21:427–36.

    Article  CAS  PubMed  Google Scholar 

  84. Rubalskii E, Ruemke S, Salmoukas C, Boyle EC, Warnecke G, Tudorache I, et al. Bacteriophage therapy for critical infections related to cardiothoracic surgery. Antibiotics. 2020;9:232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gupta P, Singh HS, Shukla VK, Nath G, Bhartiya SK. Bacteriophage therapy of chronic nonhealing wound: clinical study. Int J Low Extrem Wounds. 2019;18:171–5.

    Article  CAS  PubMed  Google Scholar 

  86. Rostkowska OM, Międzybrodzki R, Miszewska‐Szyszkowska D, Górski A, Durlik M. Treatment of recurrent urinary tract infections in a 60‐year‐old kidney transplant recipient. The use of phage therapy. Transpl Infect Dis. 2021;23:e13391.

  87. Tkhilaishvili T, Winkler T, Müller M, Perka C, Trampuz A. Bacteriophages as adjuvant to antibiotics for the treatment of periprosthetic joint infection caused by multidrug-resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2019;64:e00924-e1019.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Chan BK, Turner PE, Kim S, Mojibian HR, Elefteriades JA, Narayan D. Phage treatment of an aortic graft infected with Pseudomonas aeruginosa. Evol Med Publ Health. 2018;2018:60–6.

    Article  Google Scholar 

  89. Fish R, Kutter E, Wheat G, Blasdel B, Kutateladze M, Kuhl S. Bacteriophage treatment of intransigent diabetic toe ulcers: a case series. J Wound Care. 2016;25:S27–33.

    Article  Google Scholar 

  90. Ferry T, Kolenda C, Batailler C, Gustave C-A, Lustig S, Malatray M, et al. Phage therapy as adjuvant to conservative surgery and antibiotics to salvage patients with relapsing S. aureus prosthetic knee infection. Front Med. 2020;7:570572.

  91. Racenis K, Rezevska D, Madelane M, Lavrinovics E, Djebara S, Petersons A, Kroica J. Use of phage cocktail BFC 1.10 in combination with ceftazidime-avibactam in the treatment of multidrug-resistant Pseudomonas aeruginosa femur osteomyelitis—a case report. Front Med. 2022;9

  92. Jault P, Leclerc T, Jennes S, Pirnay JP, Que Y-A, Resch G, et al. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial. Lancet Infect Dis. 2019;19:35–45.

    Article  PubMed  Google Scholar 

  93. Aslam S, Lampley E, Wooten D, Karris M, Benson C, Strathdee S, Schooley RT, editors. Lessons learned from the first 10 consecutive cases of intravenous bacteriophage therapy to treat multidrug-resistant bacterial infections at a single center in the United States. Open forum infectious diseases; 2020: Oxford University Press US.

  94. Duplessis C, Biswas B, Hanisch B, Perkins M, Henry M, Quinones J, et al. Refractory Pseudomonas bacteremia in a 2-year-old sterilized by bacteriophage therapy. J Pediatric Infect Dis Soc. 2018;7:253–6.

    Article  CAS  PubMed  Google Scholar 

  95. Leitner L, Sybesma W, Chanishvili N, Goderdzishvili M, Chkhotua A, Ujmajuridze A, et al. Bacteriophages for treating urinary tract infections in patients undergoing transurethral resection of the prostate: a randomized, placebo-controlled, double-blind clinical trial. BMC Urol. 2017;17:1–6.

    Article  Google Scholar 

  96. Aslam S, Pretorius V, Lehman SM, Morales S, Schooley RT. Novel bacteriophage therapy for treatment of left ventricular assist device infection. J Heart Lung Transpl. 2019;38:475–6.

    Article  Google Scholar 

  97. Eskenazi A, Lood C, Wubbolts J, Hites M, Balarjishvili N, Leshkasheli L, et al. Combination of pre-adapted bacteriophage therapy and antibiotics for treatment of fracture-related infection due to pandrug-resistant Klebsiella pneumoniae. Nat Commun. 2022;13:302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ferry T, Kolenda C, Laurent F, Leboucher G, Merabischvilli M, Djebara S, et al. Personalized bacteriophage therapy to treat pandrug-resistant spinal Pseudomonas aeruginosa infection. Nat Commun. 2022;13:4239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Van Nieuwenhuyse B, Van der Linden D, Chatzis O, Lood C, Wagemans J, Lavigne R, et al. Bacteriophage-antibiotic combination therapy against extensively drug-resistant Pseudomonas aeruginosa infection to allow liver transplantation in a toddler. Nat Commun. 2022;13:5725.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Onsea J, Soentjens P, Djebara S, Merabishvili M, Depypere M, Spriet I, et al. Bacteriophage application for difficult-to-treat musculoskeletal infections: development of a standardized multidisciplinary treatment protocol. Viruses. 2019;11:891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lebeaux D, Merabishvili M, Caudron E, Lannoy D, Van Simaey L, Duyvejonck H, et al. A case of phage therapy against pandrug-resistant Achromobacter xylosoxidans in a 12-year-old lung-transplanted cystic fibrosis patient. Viruses. 2021;13:60.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Van Nieuwenhuyse B, Galant C, Brichard B, Docquier P-L, Djebara S, Pirnay J-P, et al. A case of in situ phage therapy against Staphylococcus aureus in a bone allograft polymicrobial biofilm infection: Outcomes and phage-antibiotic interactions. Viruses. 2021;13:1898.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Fedorov E, Samokhin A, Kozlova Y, Kretien S, Sheraliev T, Morozova V, et al. Short-term outcomes of phage-antibiotic combination treatment in adult patients with periprosthetic hip joint infection. Viruses. 2023;15:499.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Doub JB, Chan B, Johnson AJ. Salphage: Salvage bacteriophage therapy for a chronic Enterococcus faecalis prosthetic joint infection. IDCases. 2023;33: e01854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

No funding received for this article.

Author information

Authors and Affiliations

Authors

Contributions

MTM and NS: designed the study and helped to wrote article; MTA: drafted and edited the manuscript; AM and MD provided oversight and verification of the manuscript; SS and RS edited the English language of the article. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Mohammad Taghi Ashoobi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Competing interest

The authors declare that they have no competing interests.

Ethics approval and consent to participate

Ethical approval was not given because we conducted reviews that did not collect personal information from patients.

Consent for publication

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moghadam, M.T., Mojtahedi, A., Salamy, S. et al. Phage therapy as a glimmer of hope in the fight against the recurrence or emergence of surgical site bacterial infections. Infection 52, 385–402 (2024). https://doi.org/10.1007/s15010-024-02178-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s15010-024-02178-0

Keywords

Navigation