Skip to main content

Advertisement

Log in

Bacterial infections in acute exacerbation of chronic obstructive pulmonary disease: a systematic review and meta-analysis

  • Review
  • Published:
Infection Aims and scope Submit manuscript

Abstract

Objective

Due to the importance of Chronic obstructive pulmonary disease (COPD) as the fourth cause of mortality worldwide and the lack of studies evaluating the prevalence of bacterial infections in disease exacerbation, this systematic review and meta-analysis was performed to determine the prevalence rate of bacterial infections in COPD patients.

Methods

PubMed, ISI Web of Science, and Scopus databases were systematically searched for population-based prevalence studies (1980–2018). MeSH terms for “Bacterial infections” and “AECOPD” were used as search keywords. The selected studies were filtered according to the inclusion and exclusion criteria. Fixed and random-effects models were used for estimation of summary effect sizes. Between-study heterogeneity, as well as publication bias, were calculated.

Results

Finally, 118 out of 31,440 studies were selected. The overall estimation of the prevalence of bacterial infection was 49.59% [95% confidence interval (CI) 0.4418–0.55]. The heterogeneity in estimating the pooled prevalence of bacterial infections was shown in the studies (Cochran Q test: 6615, P < 0.0001, I2 = 98.23%). In addition, S. pneumoniae, H. influenzae, M. catarrhalis, A. baumannii, P. aeruginosa, and S. aureus were the most prevalent reported bacteria.

Conclusions

Our results as the first meta-analysis for the issue demonstrated that bacterial infections are an important risk factor for AECOPD. Further studies must be performed for understanding the exact role of bacterial agents in AECOPD and help physicians for more applicable preventive and therapeutic measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adlowitz DG, et al. Human serum and mucosal antibody responses to outer membrane protein G1b of Moraxella catarrhalis in chronic obstructive pulmonary disease. FEMS Immunol Med Microbiol. 2005;46:139–46.

    Article  CAS  Google Scholar 

  2. Agmy G, et al. Bacterial profile, antibiotic sensitivity and resistance of lower respiratory tract infections in upper Egypt. Mediterr J Hematol Infect Dis. 2013;5:1.

    Article  Google Scholar 

  3. Alamoudi OS. Bacterial infection and risk factors in outpatients with acute exacerbation of chronic obstructive pulmonary disease: a 2-year prospective study. Respirology. 2007;12:283–7.

    Article  PubMed  Google Scholar 

  4. Aleemullah M, et al. Bacteriological profile of patients with AECOPD-hospital based study. Int J Curr Microbiol App Sci. 2016;5:84–90.

    Article  CAS  Google Scholar 

  5. Aydemir Y, et al. Relationship between the GOLD combined COPD assessment staging system and bacterial isolation. Int J Chronic Obstruct Pulm Dis. 2014;27:1045–1051.

    Article  Google Scholar 

  6. Bafadhel M, et al. Airway bacteria measured by quantitative polymerase chain reaction and culture in patients with stable COPD: relationship with neutrophilic airway inflammation, exacerbation frequency, and lung function. Int J Chronic Obstruct Pulm Dis. 2015;10:1075.

    Article  CAS  Google Scholar 

  7. Bafadhel M, et al. Acute exacerbations of chronic obstructive pulmonary disease: identification of biologic clusters and their biomarkers. Am J Respir Crit Care Med. 2011;184:662–71.

    Article  PubMed  Google Scholar 

  8. Bari M, et al. Microbes responsible for acute exacerbation of COPD. Mymensingh Med J MMJ. 2010;19:576–85.

    CAS  PubMed  Google Scholar 

  9. Barker BL, et al. Association between pathogens detected using quantitative polymerase chain reaction with airway inflammation in COPD at stable state and exacerbations. Chest. 2015;147:46–55.

    Article  PubMed  Google Scholar 

  10. Bathoorn E, et al. Change in inflammation in out-patient COPD patients from stable phase to a subsequent exacerbation. Int J Chronic Obstruct Pulm Dis. 2009;4:101.

    Article  Google Scholar 

  11. Beasley V, et al. Lung microbiology and exacerbations in COPD. Int J Chronic Obstruct Pulm Dis. 2012;7:555.

    Google Scholar 

  12. Biagini M, Rossi M. Bacterial pathogens in sputum and degree of bronchial obstruction in patients with acute exacerbation of chronic obstructive pulmonary disease. Recenti Prog Med. 2002;93:470–3.

    PubMed  Google Scholar 

  13. Blasi F, et al. Chlamydia pneumoniae infection in acute exacerbations of COPD. Eur Respir J. 1993;6:19–22.

    CAS  PubMed  Google Scholar 

  14. Boixeda R, et al. Bacterial flora in the sputum and comorbidity in patients with acute exacerbations of COPD. Int J Chronic Obstruct Pulm Dis. 2015;10:2581.

    Article  Google Scholar 

  15. Boixeda R, et al. Pneumonia as comorbidity in chronic obstructive pulmonary disease (COPD). Differences between acute exacerbation of COPD and pneumonia in patients with COPD. Archivos de Bronconeumología (English Edition). 2014;50:514–20.

    Article  Google Scholar 

  16. Braeken D, et al. Bacterial aetiology and mortality in COPD patients with CAP: results from the German Competence Network, CAPNETZ. Int J Tuberc Lung Dis. 2017;21:236–43.

    Article  CAS  PubMed  Google Scholar 

  17. Cabello H, et al. Bacterial colonization of distal airways in healthy subjects and chronic lung disease: a bronchoscopic study. Eur Respir J. 1997;10:1137–44.

    Article  CAS  PubMed  Google Scholar 

  18. Cazzola M, et al. Bronchial hyperresponsiveness and bacterial respiratory infections. Clin Ther. 1991;13:157–71.

    CAS  PubMed  Google Scholar 

  19. Celli B, Barnes P. Exacerbations of chronic obstructive pulmonary disease. Eur Respir J. 2007;29:1224–38.

    Article  CAS  PubMed  Google Scholar 

  20. Chang C, et al. The changes and clinical implications of serum procalcitonin in acute exacerbations of chronic obstructive pulmonary disease. Chin J Tuberc Respir Dis. 2006;29:444–7.

    Google Scholar 

  21. Chang C, et al. Value of serum procalcitonin in diagnosing bacterial lower respiratory tract infections in people with exacerbation of chronic obstructive pulmonary disease. J Peking Univ Health Sci. 2006;38:389–92.

    CAS  Google Scholar 

  22. Chang C, et al. Bacterial infection, airway and systemic inflammation and clinical outcomes before and after treatment of AECOPD, a longitudinal and cross-sectional study. COPD J Chronic Obstruct Pulm Dis. 2015;12:19–30.

    Article  Google Scholar 

  23. Char A, et al. Evidence of mycobacterial disease in COPD patients with lung volume reduction surgery; the importance of histological assessment of specimens: a cohort study. BMC Pulm Med. 2014;14:124.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chen L, et al. Composition of pathogenic bacteria of chronic obstructive pulmonary disease patients and drug resistance of gram-negative bacilli for various antibiotics. Biomed Res. 2018;29:827–9.

    CAS  Google Scholar 

  25. Chin C, et al. Haemophilus influenzae from COPD patients with exacerbations induce more inflammation than colonizers. Am J Respir Crit Care Med. 2005;172:85–91.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Christol TJ, et al. Antibiogram pattern of Moraxella catarrhalis isolates in acute exacerbation chronic obstructive pulmonary disease. Chemotherapy. 2011;57:94–6.

    Article  CAS  PubMed  Google Scholar 

  27. Cukic V. The most common detected bacteria in sputum of patients with the acute exacerbation of COPD. Materia socio-medica. 2013;25:226.

    Article  PubMed  PubMed Central  Google Scholar 

  28. D’Anna SE, et al. Bacterial–viral load and the immune response in stable and exacerbated COPD: significance and therapeutic prospects. Int J Chronic Obstruct Pulm Dis. 2016;11:445.

    Article  Google Scholar 

  29. Dai M-Y, et al. Respiratory infectious phenotypes in acute exacerbation of COPD: an aid to length of stay and COPD Assessment Test. Int J Chronic Obstruct Pulm Dis. 2015;10:2257.

    Google Scholar 

  30. Desai H, et al. Bacterial colonization increases daily symptoms in patients with chronic obstructive pulmonary disease. Ann Am Thorac Soc. 2014;11:303–9.

    Article  PubMed  Google Scholar 

  31. Diederen BM, et al. The role of atypical respiratory pathogens in exacerbations of chronic obstructive pulmonary disease. Eur Respir J. 2007;30:240–4.

    Article  CAS  PubMed  Google Scholar 

  32. Domenech A, et al. Some pneumococcal serotypes are more frequently associated with relapses of acute exacerbations in COPD patients. PLoS one. 2013;8:e59027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Domenech A, et al. Infectious etiology of acute exacerbations in severe COPD patients. J Infect. 2013;67:516–23.

    Article  PubMed  Google Scholar 

  34. Duan Z, et al. Chlamydia pneumoniae infection in patients with chronic obstructive pulmonary disease. Chin J Tuberc Respir Dis. 2001;24:208–11.

    CAS  Google Scholar 

  35. ElFeky DS, et al. Sputum bacteriology in patients with acute exacerbation of chronic obstructive pulmonary disease. Int J Curr Microbiol App Sci. 2016;5:289–305.

    Article  CAS  Google Scholar 

  36. Eller J, et al. Infective exacerbations of chronic bronchitis: relation between bacteriologic etiology and lung function. Chest. 1998;113:1542–8.

    Article  CAS  PubMed  Google Scholar 

  37. Erkan L, et al. Role of bacteria in acute exacerbations of chronic obstructive pulmonary disease. Int J Chronic Obstruct Pulm Dis. 2008;3:463.

    Article  Google Scholar 

  38. Fournier P-E, et al. Clinical detection and characterization of bacterial pathogens in the genomics era. Genome Med. 2014;6:114.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Fruchter O, et al. Airway bacterial colonization and serum C-reactive protein are associated with chronic obstructive pulmonary disease exacerbation following bronchoscopic lung volume reduction. Clin Respir J. 2016;10:239–45.

    Article  PubMed  Google Scholar 

  40. Furqan S, Paracha SAU. Frequency of Streptococcus pneumonia and Haemophilus influenza in acute exacerbation of chronic obstructive airway disease and their sensitivity to levofloxacin. Age (years). 2014;50:28.

    Google Scholar 

  41. Gallego M, et al. Pseudomonas aeruginosa isolates in severe chronic obstructive pulmonary disease: characterization and risk factors. BMC Pulm Med. 2014;14:103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Garcha DS, et al. Changes in prevalence and load of airway bacteria using quantitative PCR in stable and exacerbated COPD. Thorax. 2012;67:1075–80.

    Article  PubMed  Google Scholar 

  43. Garcia-Nuñez M, et al. Bronchial microbiome, PA biofilm-forming capacity and exacerbation in severe COPD patients colonized by P. aeruginosa. Future Microbiol. 2017;12:379–92.

    Article  PubMed  CAS  Google Scholar 

  44. Geelen TH, et al. The host immune response contributes to Haemophilus influenzae virulence. Respir Med. 2014;108:144–52.

    Article  PubMed  Google Scholar 

  45. Groenewegen KH, Wouters EF. Bacterial infections in patients requiring admission for an acute exacerbation of COPD; a 1-year prospective study. Respir Med. 2003;97:770–7.

    Article  PubMed  Google Scholar 

  46. Guo Z, et al. Bacteriology in acute exacerbation in patients hospitalized frequently for acute exacerbation of chronic obstructive pulmonary disease. Zhonghua yi xue za zhi. 2014;94:729–32.

    PubMed  Google Scholar 

  47. Hashemi SH, et al. High seroprevalence of Bordetella pertussis in patients with chronic obstructive pulmonary disease: a case-control study. Tanaffos. 2015;14:172.

    PubMed  PubMed Central  Google Scholar 

  48. Holm KE, et al. The impact of age on outcomes in chronic obstructive pulmonary disease differs by relationship status. J Behav Med. 2014;37:654–63.

    Article  PubMed  Google Scholar 

  49. Huang YJ, et al. A persistent and diverse airway microbiota present during chronic obstructive pulmonary disease exacerbations. OMICS. 2010;14:9–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Huang YJ, et al. Airway microbiome dynamics in exacerbations of chronic obstructive pulmonary disease. J Clin Microbiol. 2014;52:2813–23.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Huedo-Medina TB, et al. Assessing heterogeneity in meta-analysis: Q statistic or I2 index? Psychol Methods. 2006;11:193.

    Article  PubMed  Google Scholar 

  52. Jafarinejad H et al. Worldwide prevalence of viral infection in AECOPD patients: a meta-analysis. Microb Pathogen. 2017.

  53. Jassem E, et al. Occurrence of non-spore forming anaerobic bacteria in the upper airways of patients with chronic obstructive pulmonary disease. Med Dosw Mikrobiol. 1996;48:49–54.

    CAS  PubMed  Google Scholar 

  54. Karnak D, et al. Chlamydia pneumoniae infection and acute exacerbation of chronic obstructive pulmonary disease (COPD). Respir Med. 2001;95:811–6.

    Article  CAS  PubMed  Google Scholar 

  55. Keith ER, et al. Characteristics of Streptococcus pseudopneumoniae isolated from purulent sputum samples. J Clin Microbiol. 2006;44:923–7.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kieszko R et al. Bacterial exacerbations of chronic obstructive pulmonary disease. The role of lung function in aetiology of exacerbation. Annales Universitatis Mariae Curie-Sklodowska. Sectio D: Medicina. 2003.

  57. King PT, et al. Bacteria in COPD; their potential role and treatment. Transl Respir Med. 2013;1:13.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kuwal A, et al. A Prospective study of bacteriological etiology in hospitalized acute exacerbation of COPD patients: relationship with lung function and respiratory failure. Turk Thorac J. 2018;19:19.

    Article  PubMed  Google Scholar 

  59. Lacoma A, et al. Value of procalcitonin, C-reactive protein, and neopterin in exacerbations of chronic obstructive pulmonary disease. Int J Chronic Obstruct Pulm Dis. 2011;6:157.

    Google Scholar 

  60. Larsen MV, et al. Bacteriology in acute exacerbation of chronic obstructive pulmonary disease in patients admitted to hospital. Scand J Infect Dis. 2009;41:26–32.

    Article  PubMed  Google Scholar 

  61. Laupland KB, Valiquette L. The changing culture of the microbiology laboratory. Can J Infect Dis Med Microbiol. 2013;24:125–8.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Lee HY, et al. Association between Helicobacter pylori seropositivity and mild to moderate COPD: clinical implications in an Asian country with a high prevalence of H. pylori. Int J Chronic Obstruct Pulm Dis. 2016;11:2055.

    Article  CAS  Google Scholar 

  63. Leitao Filho F et al. Comparisons between sputum molecular pathogen detection methods and microbiome sequencing in COPD Exacerbations. In: C13. The MICROBIOME IN CHRONIC AIRWAYS DISEASE, American Thoracic Society. 2018; pp. A4430-A4430.

  64. Lieberman D, et al. Infectious etiologies in acute exacerbation of COPD. Diagn Microbiol Infect Dis. 2001;40:95–102.

    Article  CAS  PubMed  Google Scholar 

  65. Lieberman D, et al. Serological evidence of Mycoplasma pneumoniae infection in acute exacerbation of COPD. Diagn Microbiol Infect Dis. 2002;44:1–6.

    Article  PubMed  Google Scholar 

  66. Lieberman D, et al. Serological evidence of Legionella species infection in acute exacerbation of COPD. Eur Respir J. 2002;19:392–7.

    Article  CAS  PubMed  Google Scholar 

  67. Lode H, et al. A prediction model for bacterial etiology in acute exacerbations of COPD. Infection. 2007;35:143.

    Article  CAS  PubMed  Google Scholar 

  68. Mantero M, et al. Role of Streptococcus pneumoniae infection in chronic obstructive pulmonary disease patients in Italy. Ther Adv Respir Dis. 2017;11:403–7.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Martínez-Solano L, et al. Chronic Pseudomonas aeruginosa infection in chronic obstructive pulmonary disease. Clin Infect Dis. 2008;47:1526–33.

    Article  PubMed  CAS  Google Scholar 

  70. Messous S, et al. Prevalence of Chlamydophila pneumoniae and Mycoplasma pneumoniae IgM and IgG antibodies in Tunisian patients presenting with exacerbation of chronic obstructive pulmonary disease. Medecine et maladies infectieuses. 2017;47:158–63.

    Article  CAS  PubMed  Google Scholar 

  71. Miller JJ. The inverse of the Freeman-Tukey double arcsine transformation. Am Stat. 1978;32:138.

    Google Scholar 

  72. Miravitlles M, Anzueto A. Chronic respiratory infection in patients with chronic obstructive pulmonary disease: what is the role of antibiotics? Int J Mol Sci. 2017;18:1344.

    Article  PubMed Central  CAS  Google Scholar 

  73. Miravitlles M, et al. Relationship between bacterial flora in sputum and functional impairment in patients with acute exacerbations of COPD. Chest. 1999;116:40–6.

    Article  CAS  PubMed  Google Scholar 

  74. Mogulkoc N, et al. Acute purulent exacerbation of chronic obstructive pulmonary disease and Chlamydia pneumoniae infection. Am J Respir Crit Care Med. 1999;160(1):349–53.

    Article  CAS  PubMed  Google Scholar 

  75. Moher D, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4:1.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Monso E, et al. Bacterial infection in exacerbated COPD with changes in sputum characteristics. Epidemiol Infect. 2003;131:799–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Montero M, et al. Mortality of COPD patients infected with multi-resistant Pseudomonas aeruginosa: a case and control study. Infection. 2009;37:16–9.

    Article  CAS  PubMed  Google Scholar 

  78. Murphy TF, et al. Pseudomonas aeruginosa in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2008;177:853–60.

    Article  CAS  PubMed  Google Scholar 

  79. Nagai K, et al. Antimicrobial susceptibilities and serotypes of Streptococcus pneumoniae in southwestern Japan and correlation of penicillin-binding protein 2b and 2x mutations in susceptibilities of penicillin G and cefotaxime. Diagn Microbiol Infect Dis. 2000;37:107–13.

    Article  CAS  PubMed  Google Scholar 

  80. Nakou A, et al. A prospective study on bacterial and atypical etiology of acute exacerbation in chronic obstructive pulmonary disease. Future Microbiol. 2014;9(11):1251–60.

    Article  CAS  PubMed  Google Scholar 

  81. Naveed A et al. Sputum culture and antibiogram in infective acute exacerbation of chronic obstructive pulmonary disease in a tertiary care hospital in India. Indian J Chest Dis Allied Sci. 2018;60:13–18.

    Google Scholar 

  82. Navratilova L, et al. The Streptococcus milleri group in chronic obstructive pulmonary disease. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2016;160:378–84.

    Article  PubMed  Google Scholar 

  83. Noweta K, et al. Exacerbations of chronic obstructive pulmonary disease and the role of sputum bacteriological examination. Adv Respir Med. 2006;74:396–402.

    Google Scholar 

  84. Nseir S, et al. Factors predicting bacterial involvement in severe acute exacerbations of chronic obstructive pulmonary disease. Respiration. 2008;76:253–60.

    Article  PubMed  Google Scholar 

  85. Nseir S, et al. Multiple-drug–resistant bacteria in patients with severe acute exacerbation of chronic obstructive pulmonary disease: prevalence, risk factors, and outcome. Crit Care Med. 2006;34:2959–66.

    Article  CAS  PubMed  Google Scholar 

  86. O’donnell R, et al. Inflammatory cells in the airways in COPD. Thorax. 2006;61:448–54.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Papaetis G, et al. Serological evidence of Mycoplasma pneumoniae infection in patients with acute exacerbation of COPD: analysis of 100 hospitalizations. Adv Med Sci. 2010;55:235–41.

    Article  CAS  PubMed  Google Scholar 

  88. Papaetis GS, et al. Serological diagnosis of Chlamydophila pneumoniae infection in Greek COPD patients by microimmunofluorescence and ELISA. Med Sci Monit. 2008;14:MT27–35.

    PubMed  Google Scholar 

  89. Papi A, et al. Infections and airway inflammation in chronic obstructive pulmonary disease severe exacerbations. Am J Respir Crit Care Med. 2006;173:1114–21.

    Article  PubMed  Google Scholar 

  90. Parameswaran GI, et al. Effects of bacterial infection on airway antimicrobial peptides and proteins in COPD. Chest. 2011;140:611–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Parameswaran GI, et al. Moraxella catarrhalis acquisition, airway inflammation and protease–antiprotease balance in chronic obstructive pulmonary disease. BMC Infect Dis. 2009;9:178.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Paran H, et al. Serological, clinical and radiological findings in adults with bronchopulmonary infections caused by Chlamydia trachomatis. Isr J Med Sci. 1986;22:823–7.

    CAS  PubMed  Google Scholar 

  93. Patel I, et al. Relationship between bacterial colonisation and the frequency, character, and severity of COPD exacerbations. Thorax. 2002;57:759–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Peng C, et al. C-reactive protein levels predict bacterial exacerbation in patients with chronic obstructive pulmonary disease. Am J Med Sci. 2013;345:190–4.

    Article  PubMed  Google Scholar 

  95. Perotin JM, et al. Detection of multiple viral and bacterial infections in acute exacerbation of chronic obstructive pulmonary disease: a pilot prospective study. J Med Virol. 2013;85:866–73.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Philit F, et al. Infectious agents associated with exacerbations of chronic obstructive bronchopneumopathies and asthma attacks. Rev Mal Respir. 1992;9:191–6.

    CAS  PubMed  Google Scholar 

  97. Przybyłowska D, et al. Potential respiratory pathogens colonisation of the denture plaque of patients with chronic obstructive pulmonary disease. Gerodontology. 2016;33:322–7.

    Article  PubMed  Google Scholar 

  98. Ra SW, et al. Sputum bacteriology and clinical response to antibiotics in moderate exacerbation of chronic obstructive pulmonary disease. Clin Respir J. 2018;12:1424–32.

    Article  CAS  PubMed  Google Scholar 

  99. Rashid MHU, Ahmed I. Pattern of sputum bacteriology in acute exacerbations of chronic obstructive pulmonary disease. J Enam Med Coll. 2018;8:80–4.

    Article  Google Scholar 

  100. Reissig A, et al. Microbiological diagnosis and antibiotic therapy in patients with community-acquired pneumonia and acute COPD exacerbation in daily clinical practice: comparison to current guidelines. Lung. 2013;191:239–46.

    Article  CAS  PubMed  Google Scholar 

  101. Roche N, et al. Yield of sputum microbiological examination in patients hospitalized for exacerbations of chronic obstructive pulmonary disease with purulent sputum. Respiration. 2007;74:19–25.

    Article  CAS  PubMed  Google Scholar 

  102. Rogliani P, et al. Chronic obstructive pulmonary disease and diabetes. COPD Res Pract. 2015;1:3.

    Article  Google Scholar 

  103. Rosell A, et al. Microbiologic determinants of exacerbation in chronic obstructive pulmonary disease. Arch Intern Med. 2005;165:891–7.

    Article  PubMed  Google Scholar 

  104. Saeedi P, et al. The transient but not resident (TBNR) microbiome: a Yin Yang model for lung immune system. Inhal Toxicol. 2015;27:451–61.

    Article  CAS  PubMed  Google Scholar 

  105. Saldias P, et al. Etiology and biomarkers of systemic inflammation in mild to moderate COPD exacerbations. Rev Med Chil. 2012;140:10–8.

    Article  PubMed  Google Scholar 

  106. Saxena S et al. Bacteriological profile in acute exacerbation of chronic obstructive lung disease (AECOPD). AIMDR. 2016;2:1–6.

    Google Scholar 

  107. Sethi S. Bacteria in exacerbations of chronic obstructive pulmonary disease: phenomenon or epiphenomenon? Proc Am Thorac Soc. 2004;1:109–14.

    Article  CAS  PubMed  Google Scholar 

  108. Sethi S, et al. Determinants of bacteriological outcomes in exacerbations of chronic obstructive pulmonary disease. Infection. 2016;44:65–76.

    Article  CAS  PubMed  Google Scholar 

  109. Sethi S, et al. New strains of bacteria and exacerbations of chronic obstructive pulmonary disease. N Engl J Med. 2002;347:465–71.

    Article  PubMed  Google Scholar 

  110. Sethi S, Murphy TF. Bacterial infection in chronic obstructive pulmonary disease in 2000: a state-of-the-art review. Clin Microbiol Rev. 2001;14:336–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sethi S, et al. Airway inflammation and etiology of acute exacerbations of chronic bronchitis. Chest. 2000;118:1557–65.

    Article  CAS  PubMed  Google Scholar 

  112. Sethi S, et al. Airway bacterial concentrations and exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2007;176:356–61.

    Article  PubMed  Google Scholar 

  113. Sethi S, et al. Inflammatory profile of new bacterial strain exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2008;177:491–7.

    Article  PubMed  CAS  Google Scholar 

  114. Sharma P, et al. Sputum bacteriology and antibiotic sensitivity pattern in COPD exacerbation in India. Egypt J Chest Dis Tuberc. 2017;66:593–7.

    Article  Google Scholar 

  115. Shashibhushan B, et al. Bacteriological profile and antibiotic sensitivity pattern in sputum culture of chronic obstructive pulmonary disease patients. Int J Adv Med. 2016;3:671–4.

    Google Scholar 

  116. Shimizu K, et al. Pathogens in COPD exacerbations identified by comprehensive real-time PCR plus older methods. Int J Chronic Obstruct Pulm Dis. 2015;10:2009.

    Article  CAS  Google Scholar 

  117. Simpson JL, et al. COPD is characterized by increased detection of Haemophilus influenzae, Streptococcus pneumoniae and a deficiency of Bacillus species. Respirology. 2016;21:697–704.

    Article  PubMed  Google Scholar 

  118. Singh R, et al. Inflammatory thresholds and the species-specific effects of colonising bacteria in stable chronic obstructive pulmonary disease. Respir Res. 2014;15:114.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Soler N, et al. Bronchoscopic validation of the significance of sputum purulence in severe exacerbations of chronic obstructive pulmonary disease. Thorax. 2007;62:29–35.

    Article  PubMed  Google Scholar 

  120. Soler N, et al. Bronchial microbial patterns in severe exacerbations of chronic obstructive pulmonary disease (COPD) requiring mechanical ventilation. Am J Respir Crit Care Med. 1998;157:1498–505.

    Article  CAS  PubMed  Google Scholar 

  121. Sriram KB, et al. Non-typeable Haemophilus influenzae detection in the lower airways of patients with lung cancer and chronic obstructive pulmonary disease. Multidiscip Respir Med. 2018;13:11.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Su J, et al. Sputum bacterial and fungal dynamics during exacerbations of severe COPD. PLoS One. 2015;10:e0130736.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Suseela KV, et al. Bacterial profile and antibiotic susceptibility in chronic obstructive pulmonary disease patients with acute exacerbation: a cross sectional study in a tertiary care hospital. Indian J Microbiol Res. 2016;3:317–21.

    Article  Google Scholar 

  124. Tandon MK, et al. Oral immunotherapy with inactivated nontypeable Haemophilus influenzae reduces severity of acute exacerbations in severe COPD. Chest. 2010;137(4):805–11.

    Article  PubMed  Google Scholar 

  125. Tufvesson E, et al. Patients with chronic obstructive pulmonary disease and chronically colonized with Haemophilus influenzae during stable disease phase have increased airway inflammation. Int J Chronic Obstruct Pulm Dis. 2015;10:881.

    Article  CAS  Google Scholar 

  126. Tumkaya M, et al. Relationship between airway colonization, inflammation and exacerbation frequency in COPD. Respir Med. 2007;101:729–37.

    Article  PubMed  Google Scholar 

  127. Umut S, et al. Determination of the etiological organism during acute exacerbations of COPD and efficacy of azithromycin, ampicillin-sulbactam, ciprofloxacin and cefaclor. J Chemother. 1999;11:211–4.

    Article  CAS  PubMed  Google Scholar 

  128. van der Valk P, et al. Clinical predictors of bacterial involvement in exacerbations of chronic obstructive pulmonary disease. Clin Infect Dis. 2004;39:980–6.

    Article  PubMed  Google Scholar 

  129. Varma-Basil M, et al. Role of Mycoplasma pneumoniae infection in acute exacerbations of chronic obstructive pulmonary disease. J Med Microbiol. 2009;58:322–6.

    Article  CAS  PubMed  Google Scholar 

  130. Von Hertzen L, et al. Chlamydia pneumoniae antibodies in chronic obstructive pulmonary disease. Int J Epidemiol. 1996;25:658–64.

    Article  Google Scholar 

  131. Wani UA, et al. Seroprevalence of Helicobacter pylori in COPD patients in Kashmir, India. COPD. 2019;1:57–8.

    Google Scholar 

  132. Wedzicha JA. Role of viruses in exacerbations of chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2004;1:115–20.

    Article  PubMed  Google Scholar 

  133. Ye F, et al. Spectrum and antimicrobial resistance of common pathogenic bacteria isolated from patients with acute exacerbation of chronic obstructive pulmonary disease in mainland of China. Chin Med J. 2013;126:2207–14.

    PubMed  Google Scholar 

  134. Zhao M, et al. A clinical study of bacterial infection in patients with chronic obstructive pulmonary disease. Chin J Tuberc Respir Dis. 1999;22:88–91.

    CAS  Google Scholar 

  135. Zhou Y, et al. Study on the relationship between airway bacterial infections and acute exacerbations in patients with chronic obstructive pulmonary disease. Zhonghua liu xing bing xue za zhi. 2007;28:503–6.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Study design: SAJ and AA. Acquisition of data: MM, MM, and JS. Analysis and interpretation of data: MM. Drafting of the manuscript: MM and AA. Critical revision of the manuscript for important intellectual content: SAJ, JS, and MM.

Corresponding author

Correspondence to Ali Ahmadi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest with the contents of this article.

Ethical approval

This study does not need ethical approval and patient consent. All analyses were according to previously published studies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moghoofei, M., Azimzadeh Jamalkandi, S., Moein, M. et al. Bacterial infections in acute exacerbation of chronic obstructive pulmonary disease: a systematic review and meta-analysis. Infection 48, 19–35 (2020). https://doi.org/10.1007/s15010-019-01350-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s15010-019-01350-1

Keywords

Navigation