Skip to main content
Log in

Mesenchymal Stem Cell-Derived Exosomes are Effective for Radiation Enteritis and Essential for the Proliferation and Differentiation of Lgr5+ Intestinal Epithelial Stem Cells by Regulating Mir-195/Akt/β-Catenin Pathway

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Background:

Radiation enteritis (RE) is a common complication of abdominal or pelvic radiotherapy, which when severe, could be life-threatening. Currently, there are no effective treatments. Studies have shown that mesenchymal stem cells (MSCs)-derived exosomes (MSC-exos) exhibit promising therapeutic effects in inflammatory diseases. However, the specific role of MSC-exos in RE and the regulatory mechanisms remain elusive.

Methods:

In vivo assay was carried out by injecting MSC-exos into the total abdominal irradiation (TAI)-induced RE mouse model. For in vitro assay, Lgr5-positive intestinal epithelial stem cells (Lgr5+ IESC) were extracted from mice, followed by irradiation along with MSC-exos treatment. HE staining was performed to measure histopathological changes. mRNA expression of inflammatory factors TNF-α and IL-6 and stem cell markers LGR5, and OCT4 were quantified by RT-qPCR. EdU and TUNEL staining was performed to estimate cell proliferation and apoptosis. MiR-195 expression in TAI mice and radiation-induced Lgr5+ IESC was tested.

Results:

We found that the injection of MSC-exos inhibited inflammatory reaction, increased stem cell marker expression, and maintained intestinal epithelial integrity in TAI mice. Furthermore, MSC-exos treatment increased the proliferation and simultaneously suppressed apoptosis in radiation-stimulated Lgr5+ IESC. MiR-195 expression increased by radiation exposure was decreased by MSC-exos therapy. MiR-195 overexpression facilitated the progress of RE by counteracting the effect of MSC-exos. Mechanistically, the Akt and Wnt/β-catenin pathways inhibited by MSC-exos were activated by miR-195 upregulation.

Conclusion:

MSC-Exos are effective in treating RE and are essential for the proliferation and differentiation of Lgr5+ IESCs. Moreover, MSC-exos mediates its function by regulating miR-195 Akt β-catenin pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sampath S. Treatment: radiation therapy. Cancer Treat Res. 2016;170:105–18.

    PubMed  Google Scholar 

  2. Loge L, Florescu C, Alves A, Menahem B. Radiation enteritis: diagnostic and therapeutic issues. J Visc Surg. 2020;157:475–85.

    CAS  PubMed  Google Scholar 

  3. Hale MF. Radiation enteritis: from diagnosis to management. Curr Opin Gastroenterol. 2020;36:208–14.

    PubMed  Google Scholar 

  4. Gandle C, Dhingra S, Agarwal S. Radiation-induced enteritis. Clin Gastroenterol Hepatol. 2020;18:A39-a40.

    PubMed  Google Scholar 

  5. Luo H, Chen Y, Zhang Y, Wang Y, Deng H, Yao D. External treatment of traditional Chinese medicine for radiation enteritis: A protocol for systematic review and meta-analysis. Medicine (Baltimore). 2021;100:e26014.

    PubMed  PubMed Central  Google Scholar 

  6. Allaire JM, Crowley SM, Law HT, Chang SY, Ko HJ, Vallance BA. The intestinal epithelium: Central coordinator of mucosal immunity. Trends Immunol. 2018;39:677–96.

    CAS  PubMed  Google Scholar 

  7. Luissint AC, Parkos CA, Nusrat A. Inflammation and the intestinal barrier: leukocyte-epithelial cell interactions, cell junction remodeling, and mucosal repairr. Gastroenterology. 2016;151616–32.

    CAS  PubMed  Google Scholar 

  8. van der Flier LG, Clevers H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol. 2009;71:241–60.

    PubMed  Google Scholar 

  9. Potten CS, Gandara R, Mahida YR, Loeffler M, Wright NA. The stem cells of small intestinal crypts: where are they? Cell Prolif. 2009;42:731–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Tian A, Benchabane H, Ahmed Y.  Wingless/Wnt signaling in intestinal development, homeostasis, regeneration and tumorigenesis: a drosophila perspective. J Dev Biol. 2018;6:8.

    PubMed  PubMed Central  Google Scholar 

  11. Lee G, Goretsky T, Managlia E, Dirisina R, Singh AP, Brown JB, et al. Phosphoinositide 3-kinase signaling mediates beta-catenin activation in intestinal epithelial stem and progenitor cells in colitis. Gastroenterology. 2010;139:869–81, 881.e1–9.

    Google Scholar 

  12. Wu H, Xie S, Miao J, Li Y, Wang Z, Wang M, et al. Lactobacillus reuteri maintains intestinal epithelial regeneration and repairs damaged intestinal mucosa. Gut Microbes. 2020;11:997–1014.

    PubMed  PubMed Central  Google Scholar 

  13. Metcalfe C, Kljavin NM, Ybarra R, de Sauvage FJ. Lgr5+ stem cells are indispensable for radiation-induced intestinal regeneration. Cell Stem Cell. 2014;14:149–59.

    CAS  PubMed  Google Scholar 

  14. Li N, Hua J. Interactions between mesenchymal stem cells and the immune system. Cell Mol Life Sci. 2017;74:2345–60.

    CAS  PubMed  Google Scholar 

  15. Naji A, Eitoku M, Favier B, Deschaseaux F, Rouas-Freiss N, Suganuma N. Biological functions of mesenchymal stem cells and clinical implications. Cell Mol Life Sci. 2019;76:3323–48.

    CAS  PubMed  Google Scholar 

  16. Szydlak R. Mesenchymal stem cells’ homing and cardiac tissue repair. Acta Biochim Pol. 2019;66:483–9.

    CAS  PubMed  Google Scholar 

  17. Lou S, Duan Y, Nie H, Cui X, Du J, Yao Y. Mesenchymal stem cells: biological characteristics and application in disease therapy. Biochimie. 2021;185:9–21.

    CAS  PubMed  Google Scholar 

  18. Gong W, Guo M, Han Z, Wang Y, Yang P, Xu C, et al. Mesenchymal stem cells stimulate intestinal stem cells to repair radiation-induced intestinal injury. Cell Death Dis. 2016;7:e2387.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hosseini S, Taghiyar L, Safari F, Baghaban Eslaminejad M. Regenerative medicine applications of mesenchymal stem cells. Adv Exp Med Biol. 2018;1089:115–41.

    CAS  PubMed  Google Scholar 

  20. Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013;200:373–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Harrell CR, Jovicic N, Djonov V, Arsenijevic N, Volarevic V. Mesenchymal stem cell-derived exosomes and other extracellular vesicles as new remedies in the therapy of inflammatory diseases. Cells. 2019;8:1605.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Saha S, Aranda E, Hayakawa Y, Bhanja P, Atay S, Brodin NP, et al. Macrophage-derived extracellular vesicle-packaged WNTs rescue intestinal stem cells and enhance survival after radiation injury. Nat Commun. 2016;7:13096.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Oszvald Á, Szvicsek Z, Sándor GO, Kelemen A, Soós AÁ, Pálóczi K, et al. Extracellular vesicles transmit epithelial growth factor activity in the intestinal stem cell niche. Stem Cells. 2020;38:291–300.

    CAS  PubMed  Google Scholar 

  24. Shen Z, Huang W, Liu J, Tian J, Wang S, Rui K. Effects of mesenchymal stem cell-derived exosomes on autoimmune diseases. Front Immunol. 2021;12:749192.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367:eaau6977.

  26. Yu B, Zhang X, Li X. Exosomes derived from mesenchymal stem cells. Int J Mol Sci. 2014;15:4142–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Maremanda KP, Sundar IK, Rahman I. Protective role of mesenchymal stem cells and mesenchymal stem cell-derived exosomes in cigarette smoke-induced mitochondrial dysfunction in mice. Toxicol Appl Pharmacol. 2019;385: 114788.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Cosenza S, Ruiz M, Toupet K, Jorgensen C, Noël D. Mesenchymal stem cells derived exosomes and microparticles protect cartilage and bone from degradation in osteoarthritis. Sci Rep. 2017;7:16214.

    PubMed  PubMed Central  Google Scholar 

  29. Xu R, Zhang F, Chai R, Zhou W, Hu M, Liu B, et al. Exosomes derived from pro-inflammatory bone marrow-derived mesenchymal stem cells reduce inflammation and myocardial injury via mediating macrophage polarization. J Cell Mol Med. 2019;23:7617–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. McCulloh CJ, Olson JK, Wang Y, Zhou Y, Tengberg NH, Deshpande S, et al. Treatment of experimental necrotizing enterocolitis with stem cell-derived exosomes. J Pediatr Surg. 2018;53:1215–20.

    PubMed  PubMed Central  Google Scholar 

  31. Saliminejad K, Khorram Khorshid HR, Soleymani Fard S, Ghaffari SH. An overview of microRNAs: biology, functions, therapeutics, and analysis methods. J Cell Physiol. 2019;234:5451–65.

    CAS  PubMed  Google Scholar 

  32. Liu B, Li J, Cairns MJ. Identifying miRNAs, targets and functions. Brief Bioinform. 2014;15:1–19.

    PubMed  Google Scholar 

  33. Mori MA, Ludwig RG, Garcia-Martin R, Brandão BB, Kahn CR. Extracellular miRNAs: from biomarkers to mediators of physiology and disease. Cell Metab. 2019;30:656–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang LZ, Xue H, Qiao CX, You WL, Di AT, Zhao G. MiR-223 promotes pyroptosis of enteritis cells through activating NF-κB signalling pathway by targeting SNIP1 in inflammatory bowel disease. Autoimmunity. 2021;54:362–72.

    CAS  PubMed  Google Scholar 

  35. Wang Z, Wang Q, Gong L, Liu T, Wang P, Yuan Z, et al. The NF-κB-regulated miR-221/222/syndecan-1 axis and intestinal mucosal barrier function in radiation enteritis. Int J Radiat Oncol Biol Phys. 2022;113:166–76.

    PubMed  Google Scholar 

  36. Wang SR, Rathor N, Kwon MS, Xiao L, Chung HK, Turner DJ, et al. miR-195 regulates intestinal epithelial restitution after wounding by altering actin-related protein-2 translation. Am J Physiol Cell Physiol. 2022;322:12-c722.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kwon MS, Chung HK, Xiao L, Yu TX, Wang SR, Piao JJ, et al. MicroRNA-195 regulates Tuft cell function in the intestinal epithelium by altering translation of DCLK1. Am J Physiol Cell Physiol. 2021;320:42–C1054.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hou Y, Wei W, Guan X, Liu Y, Bian G, He D, et al. A diet-microbial metabolism feedforward loop modulates intestinal stem cell renewal in the stressed gut. Nat Commun. 2021;12:271.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang F, Scoville D, He XC, Mahe MM, Box A, Perry JM, et al. Isolation and characterization of intestinal stem cells based on surface marker combinations and colony-formation assay. Gastroenterology, 2013;145:383–95.e1–21.

    PubMed  Google Scholar 

  40. Kelly CJ, Glover LE, Campbell EL, Kominsky DJ, Ehrentraut SF, Bowers BE, et al. Fundamental role for HIF-1α in constitutive expression of human β defensin-1. Mucosal Immunol. 2013;6:1110–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Busik JV, Olson LK, Grant MB, Henry DN. Glucose-induced activation of glucose uptake in cells from the inner and outer blood-retinal barrier. Invest Ophthalmol Vis Sci. 2002;43:2356–63.

    PubMed  Google Scholar 

  42. Zheng RP, Ma DK, Li Z, Zhang HF. MiR-145 regulates the chemoresistance of hepatic carcinoma cells against 5-Fluorouracil by targeting toll-like receptor 4. Cancer Manag Res. 2020;12:6165–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhu M, Qin YC, Gao CQ, Yan HC, Li XG, Wang XQ. Extracellular glutamate-induced mTORC1 activation via the IR/IRS/PI3K/Akt pathway enhances the expansion of porcine intestinal stem cells. J Agric Food Chem. 2019;67:9510–21.

    CAS  PubMed  Google Scholar 

  44. Ma X, Yao H, Yang Y, Jin L, Wang Y, Wu L, et al. miR-195 suppresses abdominal aortic aneurysm through the TNF-α/NF-κB and VEGF/PI3K/Akt pathway. Int J Mol Med. 2018;41:2350–8.

    CAS  PubMed  Google Scholar 

  45. Yang L, Bi T, Zhou S, Lan Y, Zhang R. CircRASSF2 facilitates the proliferation and metastasis of colorectal cancer by mediating the activity of Wnt/β-catenin signaling pathway by regulating the miR-195-5p/FZD4 axis. Anticancer Drugs. 2021;32:919–29.

    CAS  PubMed  Google Scholar 

  46. Lu L, Li W, Chen L, Su Q, Wang Y, Guo Z, et al. Radiation-induced intestinal damage: latest molecular and clinical developments. Future Oncol. 2019;15:4105–18.

    CAS  PubMed  Google Scholar 

  47. Al-Qadami G, Van Sebille Y, Le H, Bowen J. Gut microbiota: implications for radiotherapy response and radiotherapy-induced mucositis. Expert Rev Gastroenterol Hepatol. 2019;13:485–96.

    CAS  PubMed  Google Scholar 

  48. Marote A, Teixeira FG, Mendes-Pinheiro B, Salgado AJ. MSCs-derived exosomes: cell-secreted nanovesicles with regenerative potential. Front Pharmacol. 2016;7:231.

    PubMed  PubMed Central  Google Scholar 

  49. Yang S, Liang X, Song J, Li C, Liu A, Luo Y, et al. A novel therapeutic approach for inflammatory bowel disease by exosomes derived from human umbilical cord mesenchymal stem cells to repair intestinal barrier via TSG-6. Stem Cell Res Ther. 2021;12:315.

    PubMed  PubMed Central  Google Scholar 

  50. Tian J, Zhu Q, Zhang Y, Bian Q, Hong Y, Shen Z, et al. Olfactory ecto-mesenchymal stem cell-derived exosomes ameliorate experimental colitis via modulating Th1/Th17 and Treg cell responses. Front Immunol. 2020;11:598322.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang L, Yuan J, Kofi Wiredu Ocansey D, Lu B, Wan A, Chen X, et al. Exosomes derived from human umbilical cord mesenchymal stem cells regulate lymphangiogenesis via the miR-302d-3p/VEGFR3/AKT axis to ameliorate inflammatory bowel disease. Int Immunopharmacol. 2022;110:109066.

  52. Kim YS, Ho SB. Intestinal goblet cells and mucins in health and disease: recent insights and progress. Curr Gastroenterol Rep. 2010;12:319–30.

    PubMed  PubMed Central  Google Scholar 

  53. Sadeghi H, Bagheri H, Shekarchi B, Javadi A, Najafi M. Mitigation of radiation-induced gastrointestinal system injury by melatonin: a histopathological study. Curr Drug Res Rev. 2020;12:72–9.

    CAS  PubMed  Google Scholar 

  54. Jang H, Lee J, Park S, Kim JS, Shim S, Lee SB, et al. Baicalein mitigates radiation-induced enteritis by improving endothelial dysfunction. Front Pharmacol. 2019;10:892.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Varela ML, Mogildea M, Moreno I, Lopes A. Acute inflammation and metabolism. Inflammation. 2018;41:1115–27.

    CAS  PubMed  Google Scholar 

  56. Zhao Z, Cheng W, Qu W, Shao G, Liu S. Antibiotic alleviates radiation-induced intestinal injury by remodeling microbiota, reducing inflammation, and inhibiting fibrosis. ACS Omega. 2020;5:2967–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang T, Shi L, Li Y, Mu W, Zhang H, Li Y, et al. Polysaccharides extracted from Rheum tanguticum ameliorate radiation-induced enteritis via activation of Nrf2/HO-1. J Radiat Res. 2021;62:46–57.

    CAS  PubMed  Google Scholar 

  58. Liu B, Li X, Ai F, Wang T, Chen Y, Zhang H. The influence of radiotherapy on IL-2 and IL-6 secretions of mucous membrane epithelial cells of wistar small intestine. Cell Biochem Biophys. 2015;71:35–8.

    CAS  PubMed  Google Scholar 

  59. Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol. 2014;6:a016295.

    PubMed  PubMed Central  Google Scholar 

  60. Park YE, Moon HS, Yong D, Seo H, Yang J, Shin TS, et al. Microbial changes in stool, saliva, serum, and urine before and after anti-TNF-α therapy in patients with inflammatory bowel diseases. Sci Rep. 2022;12:6359.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Xia C, Zeng Z, Fang B, Tao M, Gu C, Zheng L, et al. Mesenchymal stem cell-derived exosomes ameliorate intervertebral disc degeneration via anti-oxidant and anti-inflammatory effects. Free Radic Biol Med. 2019;143:1–15.

    CAS  PubMed  Google Scholar 

  62. Thomi G, Surbek D, Haesler V, Joerger-Messerli M, Schoeberlein A. Exosomes derived from umbilical cord mesenchymal stem cells reduce microglia-mediated neuroinflammation in perinatal brain injury. Stem Cell Res Ther. 2019;10:105.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Shao M, Xu Q, Wu Z, Chen Y, Shu Y, Cao X, et al. Exosomes derived from human umbilical cord mesenchymal stem cells ameliorate IL-6-induced acute liver injury through miR-455-3p. Stem Cell Res Ther. 2020;11:37.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Gilbert S, Nivarthi H, Mayhew CN, Lo YH, Noah TK, Vallance J, et al. Activated STAT5 confers resistance to intestinal injury by increasing intestinal stem cell proliferation and regeneration. Stem Cell Reports. 2015;4:209–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 2007;449:1003–7.

    CAS  PubMed  Google Scholar 

  66. Yu H, Yang X, Xiao X, Xu M, Yang Y, Xue C, et al. Human adipose mesenchymal stem cell-derived exosomes protect mice from DSS-induced inflammatory bowel disease by promoting intestinal-stem-cell and epithelial regeneration. Aging Dis. 2021;12:1423–37.

    PubMed  PubMed Central  Google Scholar 

  67. Almeida MI, Silva AM, Vasconcelos DM, Almeida CR, Caires H, Pinto MT, et al. miR-195 in human primary mesenchymal stromal/stem cells regulates proliferation, osteogenesis and paracrine effect on angiogenesis. Oncotarget. 2016;7:7–22.

    PubMed  Google Scholar 

  68. Okada M, Kim HW, Matsu-ura K, Wang YG, Xu M, Ashraf M. Abrogation of age-induced MicroRNA-195 rejuvenates the senescent mesenchymal stem cells by reactivating telomerase. Stem Cells. 2016;34:148–59.

    CAS  PubMed  Google Scholar 

  69. Zhou Y, Jiang H, Gu J, Tang Y, Shen N, Jin Y. MicroRNA-195 targets ADP-ribosylation factor-like protein 2 to induce apoptosis in human embryonic stem cell-derived neural progenitor cells. Cell Death Dis. 2013;4:e695.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Yang B, Li L, Tong G, Zeng Z, Tan J, Su Z, et al. Circular RNA circ_001422 promotes the progression and metastasis of osteosarcoma via the miR-195-5p/FGF2/PI3K/Akt axis. J Exp Clin Cancer Res. 2021;40:235.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhu H, Chen Z, Yu J, Wu J, Zhuo X, Chen Q, et al. MiR-195-5p suppresses the proliferation, migration, and invasion of gallbladder cancer cells by targeting FOSL1 and regulating the Wnt/β-catenin pathway. Ann Transl Med. 2022;10:893.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Nusse R, Clevers H. Wnt/β-Catenin signaling, disease, and emerging therapeutic modalities. Cell. 2017;169:985–99.

    CAS  PubMed  Google Scholar 

  73. Hageman JH, Heinz MC, Kretzschmar K, van der Vaart J, Clevers H, Snippert HJG. Intestinal regeneration: regulation by the microenvironment. Dev Cell. 2020;54:435–46.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Zhejiang Medical and Health Science and Technology Plan Project (No. 2022PY028), Zhejiang Medical and Health Youth Talents Project (No. 2019RC087), Science and Technology Department of Taizhou City (No. 20ywb30).

Author information

Authors and Affiliations

Authors

Contributions

LY, RZ, and SZ conceived and designed the experiments. LY, and CF contributed significantly to the experiments. LY, CF, and CS helped with the experiments and arranging data. CS and YZ performed the data analyses. YZ, and YZ helped perform the analysis with constructive discussions. LY and CF wrote the draft manuscript. RZ and SZ revised the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Ruili Zhang or Shenkang Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethics statement

All the animal protocols were approved by the Ethics Committee of Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University (IACUC no. [2021]-034).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 314 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Fang, C., Song, C. et al. Mesenchymal Stem Cell-Derived Exosomes are Effective for Radiation Enteritis and Essential for the Proliferation and Differentiation of Lgr5+ Intestinal Epithelial Stem Cells by Regulating Mir-195/Akt/β-Catenin Pathway. Tissue Eng Regen Med 20, 739–751 (2023). https://doi.org/10.1007/s13770-023-00541-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-023-00541-0

Keywords

Navigation