Skip to main content
Log in

Surface Creasing-Induced Micropatterned GelMA Using Heating-Hydration Fabrication for Effective Vascularization

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

A Correction to this article was published on 26 October 2021

This article has been updated

Abstract

Background

Surface modification is used to modify the biomaterials for the regulation of cell culture using different approaches, such as chemical graft and mechanical treatment. However, those conventional methodologies often require precise fabrication in a high resolution involving either high cost or laborious steps to remove chemical residues that are toxic to the cells.

Methods

A novel and simple method was proposed and evaluated to rapidly generate surface ceases on the gelatin methacrylate (gelMA) surface using the heating-hydration process. Human umbilical vein endothelial cells (HUVECs) were cultured on the gelMA surface. The surface binding was characterized using the RGD (Arg-Gly-Asp) antibodies and cell adhesion pattern captured by scanning electron microscopy. The effect of the heating-hydration parameters on the creasing formation was investigated. The morphology of HUVECs cultured on such micropatterned gelMA was characterized and compared.

Results

It is found that the hydration solution, gelMA mixture, and hydration rate are the major factors that influence the cracking sizes in the range from 20 to 120 µm which resulted in capillary-like patterns on the gelMA surface. Low concentration of gelMA, high water concentration of cooling agent, and slow hydration rate result in the long creases, and heating of at least 60 min is required for complete dehydration. Strong fluorescence was around the creases with RGD-staining. Consequently, micropatterned gelMA demonstrated good biocompatibility with endothelial cells with more than 95% cell viability and continuous cell proliferation throughout 2 weeks as well as a good trace of neovascular formation. In comparison, normal gelMA surface did not exhibit RGD-fluorescent signals, and the cultured HUVECs on it were rounded with no spreading for network formation.

Conclusion

The heating-hydration approach can successfully and easily produce the micropatterned gelMA that allows rapid and effective vascularization to potentially improve the functionalities of the tissue-engineered construct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

References

  1. Rouwkema J, Rivron NC, van Blitterswijk CA. Vascularization in tissue engineering. Trends Biotechnol. 2008;26:434–41.

    Article  CAS  PubMed  Google Scholar 

  2. Janssen FW, Oostra J, Oorschot A, van Blitterswijk CA. A perfusion bioreactor system capable of producing clinically relevant volumes of tissue-engineered bone: in vivo bone formation showing proof of concept. Biomaterials. 2006;27:315–23.

    Article  CAS  PubMed  Google Scholar 

  3. Pörtner R, Nagel-Heyer S, Goepfert C, Adamietz P, Meenen NM. Bioreactor design for tissue engineering. J Biosci Bioeng. 2005;100:235–45.

    Article  PubMed  CAS  Google Scholar 

  4. Stevens MM, Marini RP, Schaefer D, Aronson J, Langer R, Shastri VP. In vivo engineering of organs: the bone bioreactor. Proc Natl Acad Sci U S A. 2005;102:11450–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chandra R, Rustgi R. Biodegradable polymers. Prog Polym Sci. 1998;23:1273–335.

    Article  CAS  Google Scholar 

  6. Lee KY, Yuk SH. Polymeric protein delivery systems. Prog Polym Sci. 2007;32:669–97.

    Article  CAS  Google Scholar 

  7. Uhrich KE, Cannizzaro SM, Langer RS, Shakesheff KM. Polymeric systems for controlled drug release. Chem Rev. 1999;99:3181–98.

    Article  CAS  PubMed  Google Scholar 

  8. Vasita R, Shanmugam IK, Katt DS. Improved biomaterials for tissue engineering applications: surface modification of polymers. Curr Top Med Chem. 2008;8:341–53.

    Article  CAS  PubMed  Google Scholar 

  9. Atala A, Lanza RP. Methods of tissue engineering. San Diego: Gulf Professional Publishing; 2002.

    Google Scholar 

  10. Vasita R, Katti DS. Nanofibers and their applications in tissue engineering. Int J Nanomedicine. 2006;1:15–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ito Y. Surface micropatterning to regulate cell functions. Biomaterials. 1999;20:2333–42.

    Article  CAS  PubMed  Google Scholar 

  12. Curtis A, Wilkinson C. Topographical control of cells. Biomaterials. 1997;18:1573–83.

    Article  CAS  PubMed  Google Scholar 

  13. Lee JH, Lee SJ, Khang G, Lee HB. Interaction of fibroblasts on polycarbonate membrane surfaces with different micropore sizes and hydrophilicity. J Biomater Sci Polym Ed. 1999;10:283–94.

    Article  CAS  PubMed  Google Scholar 

  14. Singhvi R, Stephanopoulos G, Wang DI. Effects of substratum morphology on cell physiology. Biotechnol Bioeng. 1994;43:764–71.

    Article  CAS  PubMed  Google Scholar 

  15. Dewez JL, Lhoest JB, Detrait E, Berger V, Dupont-Gillain CC, Vincent LM, et al. Adhesion of mammalian cells to polymer surfaces: from physical chemistry of surfaces to selective adhesion on defined patterns. Biomaterials. 1998;19:1441–5.

    Article  CAS  PubMed  Google Scholar 

  16. Bhatia SN, Yarmush ML, Toner M. Controlling cell interactions by micropatterning in co-cultures: hepatocytes and 3T3 fibroblasts. J Biomed Mater Res. 1997;34:189–99.

    Article  CAS  PubMed  Google Scholar 

  17. Blawas AS, Reichert WM. Protein patterning. Biomaterials. 1998;19:595–609.

    Article  CAS  PubMed  Google Scholar 

  18. Nimni ME. Polypeptide growth factors: targeted delivery systems. Biomaterials. 1997;18:1201–25.

    Article  CAS  PubMed  Google Scholar 

  19. Singhvi R, Kumar A, Lopez GP, Stephanopoulos GN, Wang DI, Whitesides GM, et al. Engineering cell shape and function. Science. 1994;264:696–8.

    Article  CAS  PubMed  Google Scholar 

  20. Goessl A, Garrison MD, Lhoest JB, Hoffman AS. Plasma lithography-thin-film patterning of polymeric biomaterials by RF plasma polymerization I: Surface preparation and analysis. J Biomater Sci Polym Ed. 2001;12:721–38.

    Article  CAS  PubMed  Google Scholar 

  21. Sanjana NE, Fuller SB. A fast flexible ink-jet printing method for patterning dissociated neurons in culture. J Neurosci Methods. 2004;136:151–63.

    Article  PubMed  Google Scholar 

  22. Albrecht DR, Tsang VL, Sah RL, Bhatia SN. Photo- and electropatterning of hydrogel-encapsulated living cell arrays. Lab Chip. 2005;5:111–8.

    Article  CAS  PubMed  Google Scholar 

  23. Jain G, Ford AJ, Rajagopalan P. Opposing rigidity-protein gradients reverse fibroblast durotaxis. ACS Biomater Sci Eng. 2015;1:621–31.

    Article  CAS  PubMed  Google Scholar 

  24. García S, Sunyer R, Olivares A, Noailly J, Atencia J, Trepat X. Generation of stable orthogonal gradients of chemical concentration and substrate stiffness in a microfluidic device. Lab Chip. 2015;15:2606–14.

    Article  PubMed  CAS  Google Scholar 

  25. Yao H, Wang J, Mi S. Photo processing for biomedical hydrogels design and functionality: a review. Polymers (Basel). 2018;10:11.

    Article  CAS  Google Scholar 

  26. Li B, Cao YP, Feng XQ, Gao H. Mechanics of morphological instabilities and surface wrinkling in soft materials: a review. Soft Matter. 2012;8:5728–45.

    Article  CAS  Google Scholar 

  27. Huang SQ, Feng XQ. Spinodal surface instability of soft elastic thin films. Acta Mech Sin. 2008;24:289–96.

    Article  Google Scholar 

  28. Li B, Cao YP, Feng XQ, Yu SW. Mucosal wrinkling in animal antra induced by volumetric growth. Appl Phys Lett. 2011;98:153701.

    Article  CAS  Google Scholar 

  29. Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials. 2010;31:5536–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ghatak A, Das AL. Kink instability of a highly deformable elastic cylinder. Phys Rev Lett. 2007;99:076101.

    Article  PubMed  CAS  Google Scholar 

  31. Hayward RC, Chmelka BF, Kramer EJ. Template cross-linking effects on morphologies of swellable block copolymer and mesostructured silica thin films. Macromolecules. 2005;38:7768–83.

    Article  CAS  Google Scholar 

  32. Kim J, Yoon J, Hayward RC. Dynamic display of biomolecular patterns through an elastic creasing instability of stimuli-responsive hydrogels. Nat Mater. 2010;9:159–64.

    Article  PubMed  CAS  Google Scholar 

  33. Trujillo V, Kim J, Hayward RC. Creasing instability of surface-attached hydrogels. Soft Matter. 2008;4:564–9.

    Article  CAS  PubMed  Google Scholar 

  34. Yang S, Khare K, Lin PC. Harnessing surface wrinkle patterns in soft matter. Adv Funct Mater. 2010;20:2550–64.

    Article  CAS  Google Scholar 

  35. Gauvreau V, Laroche G. Micropattern printing of adhesion, spreading, and migration peptides on poly (tetrafluoroethylene) films to promote endothelialization. Bioconjug Chem. 2005;16:1088–97.

    Article  CAS  PubMed  Google Scholar 

  36. Weiss F, Cai S, Hu Y, Kyoo Kang M, Huang R, Suo Z. Creases and wrinkles on the surface of a swollen gel. J Appl Phys. 2013;114:073507.

    Article  CAS  Google Scholar 

  37. Zhao Z, Gu J, Zhao Y, Guan Y, Zhu X, Zhang Y. Hydrogel thin film with swelling-induced wrinkling patterns for high-throughput generation of multicellular spheroids. Biomacromolecules. 2014;15:3306–12.

    Article  CAS  PubMed  Google Scholar 

  38. Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE. Geometric control of cell life and death. Science. 1997;276:1425–8.

    Article  CAS  PubMed  Google Scholar 

  39. Kang MK, Huang R. Swell-induced surface instability of confined hydrogel layers on substrates. J Mech Phys Solids. 2010;58:1582–98.

    Article  CAS  Google Scholar 

  40. Grover CN, Cameron RE, Best SM. Investigating the morphological, mechanical and degradation properties of scaffolds comprising collagen, gelatin and elastin for use in soft tissue engineering. J Mech Behav Biomed. 2012;10:62–74.

    Article  CAS  Google Scholar 

  41. Offeddu GS, Ashworth JC, Cameron RE, Oyen ML. Multi-scale mechanical response of freeze-dried collagen scaffolds for tissue engineering applications. J Mech Behav Biomed. 2015;42:19–25.

    Article  CAS  Google Scholar 

  42. Risau W, Flamme I. Vasculogenesis. Annu Rev Cell Dev Bi. 1995;11:73–91.

    Article  CAS  Google Scholar 

  43. Frueh FS, Später T, Körbel C, Scheuer C, Simson AC, Lindenblatt N, et al. Prevascularization of dermal substitutes with adipose tissue-derived microvascular fragments enhances early skin grafting. Sci Rep. 2018;8:10977.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Stosich MS, Bastian B, Marion NW, Clark PA, Reilly G, Mao JJ. Vascularized adipose tissue grafts from human mesenchymal stem cells with bioactive cues and microchannel conduits. Tissue Eng. 2007;13:2881–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fu J, Fan C, Lai WS, Wang D. Enhancing vascularization of a gelatin-based micro-cavitary hydrogel by increasing the density of the micro-cavities. Biomed Mater. 2016;11:055012.

    Article  PubMed  CAS  Google Scholar 

  46. Van Vlierberghe S, Dubruel P, Schacht E. Effect of cryogenic treatment on the rheological properties of gelatin hydrogels. J Bioact Compat Polym. 2010;25:498–512.

    Article  CAS  Google Scholar 

  47. Guvendiren M, Burdick JA, Yang S. Solvent induced transition from wrinkles to creases in thin film gels with depth-wise crosslinking gradients. Soft Matter. 2010;6:5795–801.

    Article  CAS  Google Scholar 

  48. Chen X, Bai S, Li B, Liu H, Wu G, Liu S, et al. Fabrication of gelatin methacrylate/nanohydroxyapatite microgel arrays for periodontal tissue regeneration. Int J Nanomedicine. 2016;11:4707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pepelanova I, Kruppa K, Scheper T, Lavrentieva A. Gelatin-methacryloyl (GelMA) hydrogels with defined degree of functionalization as a versatile toolkit for 3D cell culture and extrusion bioprinting. Bioengineering (Basel). 2018;5:55.

    Article  CAS  Google Scholar 

  50. Nakanishi J, Takarada T, Yamaguchi K, Maeda M. Recent advances in cell micropatterning techniques for bioanalytical and biomedical sciences. Anal Sci. 2008;24:67–72.

    Article  CAS  PubMed  Google Scholar 

  51. Van den Steen PE, Dubois B, Nelissen I, Rudd PM, Dwek RA, Opdenakker G. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9). Crit Rev Biochem Mol Biol. 2002;37:375–536.

    Article  PubMed  Google Scholar 

  52. Schuurman W, Levett PA, Pot MW, van Weeren PR, Dhert WJ, Hutmacher DW, et al. Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs. Macromol Biosci. 2013;13:551–61.

    Article  CAS  PubMed  Google Scholar 

  53. Chaturvedi RR, Stevens KR, Solorzano RD, Schwartz RE, Eyckmans J, Baranski JD, et al. Patterning vascular networks in vivo for tissue engineering applications. Tissue Eng Part C Methods. 2015;21:509–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nikkhah M, Eshak N, Zorlutuna P, Annabi N, Castello M, Kim K, et al. Directed endothelial cell morphogenesis in micropatterned gelatin methacrylate hydrogels. Biomaterials. 2012;33:9009–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Vernon RB, Lara SL, Drake CJ, Iruela-Arispe ML, Angello JC, Little CD, et al. Organized type I collagen influences endothelial patterns during “spontaneous angiogenesis in vitro”: planar cultures as models of vascular development. In Vitro Cell Dev Biol Anim. 1995;31:120–31.

    Article  CAS  PubMed  Google Scholar 

  56. Nelson CM, Jean RP, Tan JL, Liu WF, Sniadecki NJ, Spector AA, et al. Emergent patterns of growth controlled by multicellular form and mechanics. Proc Natl Acad Sci U S A. 2005;102:11594–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Moon JJ, Hahn MS, Kim I, Nsiah BA, West JL. Micropatterning of poly (ethylene glycol) diacrylate hydrogels with biomolecules to regulate and guide endothelial morphogenesis. Tissue Eng Part A. 2008;15:579–85.

    Article  PubMed Central  Google Scholar 

  58. Yoon J, Kim J, Hayward RC. Nucleation, growth, and hysteresis of surface creases on swelled polymer gels. Soft Matter. 2010;6:5807–16.

    Article  CAS  Google Scholar 

  59. Yoon J, Bian P, Kim J, McCarthy TJ, Hayward RC. Local switching of chemical patterns through light-triggered unfolding of creased hydrogel surfaces. Angew Chem Int Ed Engl. 2012;51:7146–9.

    Article  CAS  PubMed  Google Scholar 

  60. Gent AN. Elastic instabilities in rubber. Int J Non Linear Mech. 2005;40:165–75.

    Article  Google Scholar 

  61. Biot MA. Incremental elastic coefficients of an isotropic medium in finite strain. Appl Sci Res. 1963;12:151–67.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the valuable discussion and comments from Drs. Xiaomeng Wang (Lee Koon Chian School of Medicine, Nanyang Technological University), Yi-Chin Toh (Department of Biomedical Engineering, National University of Singapore), and Teresa Dicolandrea (The Procter & Gamble Company). This study was funded by A*STAR-P&G Biomedical Research Council Strategic Positioning Fund (BMRC SPF, APG 2013/045A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufeng Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This study protocol was approved by the institute review board of Nanyang Technological University (IRB APG2013/045A).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 1068 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasetsiriku, S., Ketpun, D., Chuah, Y.J. et al. Surface Creasing-Induced Micropatterned GelMA Using Heating-Hydration Fabrication for Effective Vascularization. Tissue Eng Regen Med 18, 759–773 (2021). https://doi.org/10.1007/s13770-021-00345-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-021-00345-0

Keywords

Navigation