Skip to main content
Log in

Oral Soft Tissue Regeneration Using Nano Controlled System Inducing Sequential Release of Trichloroacetic Acid and Epidermal Growth Factor

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Background:

The effect of nano controlled sequential release of trichloroacetic acid (TCA) and epidermal growth factor (EGF) on the oral soft tissue regeneration was determined.

Methods:

Hydrophobically modified glycol chitosan (HGC) nano controlled system was developed for the sequential release of TCA and EGF, and the release pattern was identified. The HGC-based nano controlled release system was injected into the critical-sized defects created in beagles’ palatal soft tissues. The palatal impression and its scanned body was obtained on various time points post-injection, and the volumetric amount of soft tissue regeneration was compared among the three groups: CON (natural regeneration control group), EXP1 (TCA-loaded nano controlled release system group), EXP2 (TCA and EGF individually loaded nano controlled release system). DNA microarray analysis was performed and various soft tissue regeneration parameters in histopathological specimens were measured.

Results:

TCA release was highest at Day 1 whereas EGF release was highest at Day 2 and remained high until Day 3. In the volumetric measurements of impression body scans, no significant difference in soft tissue regeneration between the three groups was shown in two-way ANOVA. However, in the one-way ANOVA at Day 14, EXP2 showed a significant increase in soft tissue regeneration compared to CON. High correlation was determined between the histopathological results of each group. DNA microarray showed up-regulation of various genes and related cell signaling pathways in EXP2 compared to CON.

Conclusion:

HGC-based nano controlled release system for sequential release of TCA and EGF can promote regeneration of oral soft tissue defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Patel M, Nixon PJ, Chan MF. Gingival recession: Part 1. Aetiology and non-surgical management. Br Dent J. 2011;211:251–4.

    CAS  PubMed  Google Scholar 

  2. Mythri S, Arunkumar SM, Hegde S, Rajesh SK, Munaz M, Ashwin D. Etiology and occurrence of gingival recession—an epidemiological study. J Indian Soc Periodontol. 2015;19:671–5.

    PubMed  PubMed Central  Google Scholar 

  3. Miller PD Jr. A classification of marginal tissue recession. Int J Periodontics Restorative Dent. 1985;5:8–13.

    PubMed  Google Scholar 

  4. Nelson SW. The subpedicle connective tissue graft. A bilaminar reconstructive procedure for the coverage of denuded root surfaces. J Periodontol. 1987;58:95–102.

    CAS  PubMed  Google Scholar 

  5. Lee JB, Chung WG, Kwahck H, Lee KH. Focal treatment of acne scars with trichloroacetic acid: chemical reconstruction of skin scars method. Dermatol Surg. 2002;28:1017–21.

    PubMed  Google Scholar 

  6. Mansouri P, Azizian Z, Hejazi S, Chalangari R, Chalangari KM. Evaluation the efficacy of trichloroacetic acid (TCA) 33% in treatment of oral retinoid-induced cheilitis compared with placebo (Vaseline): a randomized pilot study. J Dermatolog Treat. 2018;29:694–7.

    CAS  PubMed  Google Scholar 

  7. Mahmoudi H, Balighi K, Tavakolpour S, Daneshpazhooh M, Chams-Davatchi C. Trichloroacetic acid as a treatment for persistent oral mucosal lesions in pemphigus vulgaris. J Am Acad Dermatol. 2019;80:e51–2.

    PubMed  Google Scholar 

  8. Lee K, Ben Amara H, Lee SC, Leesungbok R, Chung MA, Koo KT, et al. Chemical regeneration of wound defects relevance to the canine palatal mucosa and cell cycle up regulation in human gingival fibroblasts. Tissue Eng Regen Med. 2019;16:675–84.

    CAS  PubMed  Google Scholar 

  9. Wilczewska AZ, Niemirowicz K, Markiewicz KH, Car H. Nanoparticles as drug delivery systems. Pharmacol Rep. 2012;64:1020–37.

    CAS  PubMed  Google Scholar 

  10. Sinha VR, Singla AK, Wadhawan S, Kaushik R, Kumria R, Bansal K, et al. Chitosan microspheres as a potential carrier for drugs. Int J Pharm. 2004;274:1–33.

    CAS  PubMed  Google Scholar 

  11. Kwon S, Park JH, Chung H, Kwon IC, Jeong SY, Kim IS. Physicochemical characteristics of self-assembled nanoparticles based on glycol chitosan bearing 5β-cholanic acid. Langmuir. 2003;19:10188–93.

    CAS  Google Scholar 

  12. Li T, Longobardi L, Granero-Molto F, Myers TJ, Yan Y, Spagnoli A. Use of glycol chitosan modified by 5beta-cholanic acid nanoparticles for the sustained release of proteins during murine embryonic limb skeletogenesis. J Control Release. 2010;144:101–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Jegal JH, Choi GH, Lee HJ, Kim KD, Lee SC. Surface engineering of titanium with simvastatin-releasing polymer nanoparticles for enhanced osteogenic differentiation. Macromol Res. 2016;24:83–9.

    CAS  Google Scholar 

  14. Thoma DS, Sancho-Puchades M, Ettlin DA, Hämmerle CH, Jung RE. Impact of a collagen matrix on early healing, aesthetics and patient morbidity in oral mucosal wounds—a randomized study in humans. J Clin Periodontol. 2012;39:157–65.

    PubMed  Google Scholar 

  15. Ayvazyan A, Morimoto N, Kanda N, Takemoto S, Kawai K, Sakamoto Y, et al. Collagen-gelatin scaffold impregnated with bFGF accelerates palatal wound healing of palatal mucosa in dogs. J Surg Res. 2011;171:e247–57.

    CAS  PubMed  Google Scholar 

  16. Nazar RN. Ribosomal RNA processing and ribosome biogenesis in eukaryotes. IUBMB Life. 2004;56:457–65.

    CAS  PubMed  Google Scholar 

  17. Amin MA, Matsunaga S, Ma N, Takata H, Yokoyama M, Uchiyama S, et al. Fibrillarin, a nucleolar protein, is required for normal nuclear morphology and cellular growth in HeLa cells. Biochem Biophys Res Commun. 2007;360:320–6.

    CAS  PubMed  Google Scholar 

  18. Pigullo S, Pavesi E, Dianzani I, Santamaria G, Svahn J, Risso M, et al. NOLA1 gene mutations in acquired aplastic anemia. Pediatr Blood Cancer. 2009;52:376–8.

    PubMed  Google Scholar 

  19. Yu H, Jin S, Zhang N, Xu Q. Up-regulation of GTPBP4 in colorectal carcinoma is responsible for tumor metastasis. Biochem Biophys Res Commun. 2016;480:48–54.

    CAS  PubMed  Google Scholar 

  20. Hayano T, Yanagida M, Yamauchi Y, Shinkawa T, Isobe T, Takahashi N. Proteomic analysis of human Nop56p-associated pre-ribosomal ribonucleoprotein complexes. Possible link between Nop56p and the nucleolar protein treacle responsible for treacher collins syndrome. J Biol Chem. 2003;278:34309–19.

    CAS  PubMed  Google Scholar 

  21. Nelson SA, Santora KE, LaRochelle WJ. Isolation and characterization of a novel PDGF-induced human gene. Gene. 2000;253:87–93.

    CAS  PubMed  Google Scholar 

  22. Lavia P. The GTPase RAN regulates multiple steps of the centrosome life cycle. Chromosome Res. 2016;24:53–65.

    CAS  PubMed  Google Scholar 

  23. Zemp I, Wild T, O’Donohue MF, Wandrey F, Widmann B, Gleizes PE, et al. Distinct cytoplasmic maturation steps of 40S ribosomal subunit precursors require hRio2. J Cell Biol. 2009;185:1167–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Claudio JO, Liew CC, Ma J, Heng HH, Stewart AK, Hawley RG. Cloning and expression analysis of a novel WD repeat gene, WDR3, mapping to 1p12-p13. Genomics. 1999;59:85–9.

    CAS  PubMed  Google Scholar 

  25. Morales JC, Richard P, Patidar PL, Motea EA, Dang TT, Manley JL, et al. XRN2 links transcription termination to DNA damage and replication stress. PLoS Genet. 2016;12:e1006107.

    PubMed  PubMed Central  Google Scholar 

  26. Krishnamurthy N, Kurzrock R. Targeting the Wnt/beta-catenin pathway in cancer: update on effectors and inhibitors. Cancer Treat Rev. 2018;62:50–60.

    CAS  PubMed  Google Scholar 

  27. Sun BK, Boxer LD, Ransohoff JD, Siprashvili Z, Qu K, Lopez-Pajares V, et al. CALML5 is a ZNF750- and TINCR-induced protein that binds stratifin to regulate epidermal differentiation. Genes Dev. 2015;29:2225–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Thanasopoulou A, Stravopodis DJ, Dimas KS, Schwaller J, Anastasiadou E. Loss of CCDC6 affects cell cycle through impaired intra-S-phase checkpoint control. PLoS One. 2012;7:e31007.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang M, Qiu L, Zhang Y, Xu D, Zheng JC, Jiang L. CXCL12 enhances angiogenesis through CXCR7 activation in human umbilical vein endothelial cells. Sci Rep. 2017;7:8289.

    PubMed  PubMed Central  Google Scholar 

  30. Wang Y, Liu LL, Tian Y, Chen Y, Zha WH, Li Y, et al. Upregulation of DAPK2 ameliorates oxidative damage and apoptosis of placental cells in hypertensive disorder complicating pregnancy by suppressing human placental microvascular endothelial cell autophagy through the mTOR signaling pathway. Int J Biol Macromol. 2019;121:488–97.

    CAS  PubMed  Google Scholar 

  31. Wei W, Shi L, Chen W, Hu L, Chen D, Shi X, et al. miR-200c regulates the proliferation, apoptosis and invasion of gastric carcinoma cells through the downregulation of EDNRA expression. Int J Mol Med. 2018;41:1619–26.

    CAS  PubMed  Google Scholar 

  32. Shaoul R, Eliahu L, Sher I, Hamlet Y, Miselevich I, Goldshmidt O, et al. Elevated expression of FGF7 protein is common in human gastric diseases. Biochem Biophys Res Commun. 2006;350:825–33.

    CAS  PubMed  Google Scholar 

  33. Wang K, Ji W, Yu Y, Li Z, Niu X, Xia W, et al. FGFR1-ERK1/2-SOX2 axis promotes cell proliferation, epithelial-mesenchymal transition, and metastasis in FGFR1-amplified lung cancer. Oncogene. 2018;37:5340–54.

    CAS  PubMed  Google Scholar 

  34. Huang T, Liu D, Wang Y, Li P, Sun L, Xiong H, et al. FGFR2 promotes gastric cancer progression by inhibiting the expression of thrombospondin4 via PI3K-akt-mtor pathway. Cell Physiol Biochem. 2018;50:1332–45.

    CAS  PubMed  Google Scholar 

  35. Corda G, Sala A. Non-canonical WNT/PCP signalling in cancer: fzd6 takes centre stage. Oncogenesis. 2017;6:e364.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Luo C, Zhao S, Dai W, Zheng N, Wang J. Proteomic analyses reveal GNG12 regulates cell growth and casein synthesis by activating the leu-mediated mTORC1 signaling pathway. Biochim Biophys Acta Proteins Proteom. 2018;1866:1092–101.

    CAS  PubMed  Google Scholar 

  37. Qian J, Jing J, Jin G, Wang H, Wang Y, Liu H, et al. Association between polymorphisms in the GSTA4 gene and risk of lung cancer: a case–control study in a southeastern Chinese population. Mol Carcinog. 2009;48:253–9.

    CAS  PubMed  Google Scholar 

  38. Wang H, Deng G, Ai M, Xu Z, Mou T, Yu J, et al. Hsp90ab1 stabilizes LRP5 to promote epithelial-mesenchymal transition via activating of AKT and Wnt/β-catenin signaling pathways in gastric cancer progression. Oncogene. 2019;38:1489–507.

    CAS  PubMed  Google Scholar 

  39. Matthes SA, LaRouere TJ, Horowitz JC, White ES. Plakoglobin expression in fibroblasts and its role in idiopathic pulmonary fibrosis. BMC Pulm Med. 2015;15:140.

    PubMed  PubMed Central  Google Scholar 

  40. Yang S, Li WS, Dong F, Sun HM, Wu B, Tan J, et al. KITLG is a novel target of miR-34c that is associated with the inhibition of growth and invasion in colorectal cancer cells. J Cell Mol Med. 2014;18:2092–102.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Shan N, Zhang X, Xiao X, Zhang H, Tong C, Luo X, et al. Laminin α4 (LAMA4) expression promotes trophoblast cell invasion, migration, and angiogenesis, and is lowered in preeclamptic placentas. Placenta. 2015;36:809–20.

    CAS  PubMed  Google Scholar 

  42. Kim YJ, Park JK, Kang WS, Kim SK, Park HJ, Nam M, et al. LAMB1 polymorphism is associated with autism symptom severity in Korean autism spectrum disorder patients. Nord J Psychiatry. 2015;69:594–8.

    PubMed  Google Scholar 

  43. Kashima H, Wu RC, Wang Y, Sinno AK, Miyamoto T, Shiozawa T, et al. Laminin C1 expression by uterine carcinoma cells is associated with tumor progression. Gynecol Oncol. 2015;139:338–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Thameem F, Yang X, Permana PA, Wolford JK, Bogardus C, Prochazka M. Evaluation of the microsomal glutathione S-transferase 3 (MGST3) locus on 1q23 as a type 2 diabetes susceptibility gene in pima Indians. Hum Genet. 2003;113:353–8.

    CAS  PubMed  Google Scholar 

  45. Sugimoto K, Nakamura T, Tokunaga T, Uehara Y, Okada T, Taniwaki T, et al. Matrix metalloproteinase promotes elastic fiber degradation in ligamentum flavum degeneration. PLoS One. 2018;13:e0200872.

    PubMed  PubMed Central  Google Scholar 

  46. Lu L, Fu X, Li Z, Qiu Y, Li W, Zhou Z, et al. Platelet-derived growth factor receptor alpha (PDGFRα) is overexpressed in NK/T-cell lymphoma and mediates cell survival. Biochem Biophys Res Commun. 2018;504:525–31.

    CAS  PubMed  Google Scholar 

  47. Do SK, Jeong JY, Lee SY, Choi JE, Hong MJ, Kang HG, et al. Glucose transporter 1 gene variants predict the prognosis of patients with early-stage non-small cell lung cancer. Ann Surg Oncol. 2018;25:3396–403.

    PubMed  Google Scholar 

  48. Georgescu MM. PTEN tumor suppressor network in PI3K-Akt pathway control. Genes Cancer. 2010;1:1170–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Sun S, Wang Y, Wu Y, Gao Y, Li Q, Abdulrahman AA, et al. Identification of COL1A1 as an invasion related gene in malignant astrocytoma. Int J Oncol. 2018;53:2542–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Ao R, Guan L, Wang Y, Wang JN. Silencing of COL1A2, COL6A3, and THBS2 inhibits gastric cancer cell proliferation, migration, and invasion while promoting apoptosis through the PI3k-Akt signaling pathway. J Cell Biochem. 2018;119:4420–34.

    CAS  PubMed  Google Scholar 

  51. Setti A, Sankati HS, Devi TA, Sekhar AC, Rao JV, Pawar SC. Structural insights into the extra cellular segment of integrinβ5 and molecular interaction studies. J Recept Signal Transduct Res. 2013;33:319–24.

    CAS  PubMed  Google Scholar 

  52. Gimba ERP, Brum MCM, Nestal De Moraes G. Full-length osteopontin and its splice variants as modulators of chemoresistance and radioresistance (review). Int J Oncol. 2019;54:420–30.

    CAS  PubMed  Google Scholar 

  53. Hayasaki A, Murata Y, Usui M, Hibi T, Ito T, Iizawa Y, et al. Clinical significance of histological effect and intratumor stromal expression of tenascin-C in resected specimens after chemoradiotherapy for initially locally advanced unresectable pancreatic ductal adenocarcinoma. Pancreas. 2018;47:390–9.

    CAS  PubMed  Google Scholar 

  54. Yamaguchi H, Condeelis J. Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochem Biophys Acta. 2007;1773:642–52.

    CAS  PubMed  Google Scholar 

  55. Laurila E, Savinainen K, Kuuselo R, Karhu R, Kallioniemi A. Characterization of the 7q21-q22 amplicon identifies ARPC1A, a subunit of the Arp2/3 complex, as a regulator of cell migration and invasion in pancreatic cancer. Genes Chromosomes Cancer. 2009;48:330–9.

    CAS  PubMed  Google Scholar 

  56. Yu BB, Lin GX, Li L, Qu S, Liang ZG, Chen KH, et al. Cofilin-2 Acts as a marker for predicting radiotherapy response and is a potential therapeutic target in nasopharyngeal carcinoma. Med Sci Monit. 2018;24:2317–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Dong L, Li Z, Xue L, Li G, Zhang C, Cai Z, et al. DIAPH3 promoted the growth, migration and metastasis of hepatocellular carcinoma cells by activating beta-catenin/TCF signaling. Mol Cell Biochem. 2018;438:183–90.

    CAS  PubMed  Google Scholar 

  58. Suzuki T, Nishiyama K, Yamamoto A, Inazawa J, Iwaki T, Yamada T, et al. Molecular cloning of a novel apoptosis-related gene, human Nap1 (NCKAP1), and its possible relation to alzheimer disease. Genomics. 2000;63:246–54.

    CAS  PubMed  Google Scholar 

  59. Kim MJ, Lee YS, Han GY, Lee HN, Ahn C, Kim CW. Profilin 2 promotes migration, invasion, and stemness of HT29 human colorectal cancer stem cells. Biosci Biotechnol Biochem. 2015;79:1438–46.

    CAS  PubMed  Google Scholar 

  60. Takenawa T, Itoh T. Phosphoinositides, key molecules for regulation of actin cytoskeletal organization and membrane traffic from the plasma membrane. Biochem Biophys Acta. 2001;1533:190–206.

    CAS  PubMed  Google Scholar 

  61. Reichardt LF, Prokop A. Introduction: the role of extracellular matrix in nervous system development and maintenance. Dev Neurobiol. 2011;71:883–8.

    PubMed  Google Scholar 

  62. Yang SH, Sharrocks AD, Whitmarsh AJ. Transcriptional regulation by the MAP kinase signaling cascades. Gene. 2003;320:3–21.

    CAS  PubMed  Google Scholar 

  63. Park AM, Tsunoda I, Yoshie O. Heat shock protein 27 promotes cell cycle progression by down-regulating E2F transcription factor 4 and retinoblastoma family protein p130. J Biol Chem. 2018;293:15815–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Shrestha D, Kim N, Song K. Stathmin/Op18 depletion induces genomic instability and leads to premature senescence in human normal fibroblasts. J Cell Biochem. 2018;119:2381–95.

    CAS  PubMed  Google Scholar 

  65. Wäsch R, Robbins JA, Cross FR. The emerging role of APC/CCdh1 in controlling differentiation, genomic stability and tumor suppression. Oncogene. 2010;29:1–10.

    PubMed  Google Scholar 

  66. Xie D, Song H, Wu T, Li D, Hua K, Xu H, et al. MicroRNA-424 serves an anti oncogenic role by targeting cyclin dependent kinase 1 in breast cancer cells. Oncol Rep. 2018;40:3416–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Hotton J, Agopiantz M, Leroux A, Charra-Brunaud C, Marie B, Busby-Venner H, et al. Minichromosome maintenance complex component 6 (MCM6) expression correlates with histological grade and survival in endometrioid endometrial adenocarcinoma. Virchows Arch. 2018;472:623–33.

    CAS  PubMed  Google Scholar 

  68. Chen PY, Tien HJ, Chen SF, Horng CT, Tang HL, Jung HL, et al. Response of myeloid leukemia cells to luteolin is modulated by differentially expressed pituitary tumor-transforming gene 1 (PTTG1) oncoprotein. Int J Mol Sci. 2018;19:E1173.

    PubMed  Google Scholar 

  69. Adachi H, Murakami Y, Tanaka H, Nakata S. Increase of stratifin triggered by ultraviolet irradiation is possibly related to premature aging of human skin. Exp Dermatol. 2014;23:S32–6.

    Google Scholar 

  70. Wu SG, Shih JY. Management of acquired resistance to EGFR TKI-targeted therapy in advanced non-small cell lung cancer. Mol Cancer. 2018;17:38.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (Grant No. HI16C1838).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sang Cheon Lee or Suk Won Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

The animal experiment protocol was approved by the Institutional Animal Care and Use Committee, Cronex, Hwasung-si, Gyeonggi-do, Republic of Korea (CRONEX-IACUC: 201803002).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 2784 kb)

Supplementary material 2 (DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, K.M., Lee, H.J., Koo, KT. et al. Oral Soft Tissue Regeneration Using Nano Controlled System Inducing Sequential Release of Trichloroacetic Acid and Epidermal Growth Factor. Tissue Eng Regen Med 17, 91–103 (2020). https://doi.org/10.1007/s13770-019-00232-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-019-00232-9

Keywords

Navigation