Skip to main content
Log in

Electrostatically Interactive Injectable Hydrogels for Drug Delivery

  • Review Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Background:

Several injectable hydrogels have been developed extensively for a broad range of biomedical applications. Injectable hydrogels forming in situ through the change in external stimuli have the distinct properties of easy management and minimal invasiveness, and thus provide the advantage of bypassing surgical procedures for administration resulting in better patient compliance.

Methods:

The injectable in situ-forming hydrogels can be formed irreversibly or reversibly under physiological stimuli. Among several external stimuli that induce formation of hydrogels in situ, in this review, we focused on the electrostatic interactions as the most simple and interesting stimulus.

Results:

Currently, numerous polyelectrolytes have been reported as potential electrostatically interactive in situ-forming hydrogels. In this review, a comprehensive overview of the rapidly developing electrostatically interactive in situ-forming hydrogels, which are produced by various anionic and cationic polyelectrolytes such as chitosan, celluloses, and alginates, has been outlined and summarized. Further, their biomedical applications have also been discussed.

Conclusion:

The review concludes with perspectives on the future of electrostatically interactive in situ-forming hydrogels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zhang Z. Injectable biomaterials for stem cell delivery and tissue regeneration. Expert Opin Biol Ther. 2016;17:49–62.

    Article  CAS  PubMed  Google Scholar 

  2. Kim DY, Kwon DY, Kwon JS, Kim JH, Min BH, Kim MS. Stimuli-responsive injectable in situ-forming hydrogels for regenerative medicines. Polym Rev (Phila Pa). 2015;55:407–52.

    Article  CAS  Google Scholar 

  3. Yang J, Zhang YS, Yue K, Khademhosseini A. Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta Biomater. 2017;57:1–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Luca A, Butnaru M, Maier SS, Knieling L, Bredetean O, Verestiuc L, et al. Atelocollagen-based hydrogels crosslinked with oxidised polysaccharides as cell encapsulation matrix for engineered bioactive stromal tissue. Tissue Eng Regen Med. 2017;14:539–56.

    Article  CAS  Google Scholar 

  5. Xia T, Liu W, Yang L. A review of gradient stiffness hydrogels used in tissue engineering and regenerative medicine. J Biomed Mater Res A. 2017;105:1799–812.

    Article  CAS  PubMed  Google Scholar 

  6. Kim H, Jeong H, Han S, Beack S, Hwang BW, Shin M, et al. Hyaluronate and its derivatives for customized biomedical applications. Biomaterials. 2017;123:155–71.

    Article  CAS  PubMed  Google Scholar 

  7. Vedadghavami A, Minooei F, Mohammadi MH, Khetani S, Rezaei Kolahchi A, Mashayekhan S, et al. Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications. Acta Biomater. 2017;62:42–63.

    Article  CAS  PubMed  Google Scholar 

  8. Das S, Zhou K, Ghosh D, Jha NN, Singh PK, Jacob RS, et al. Implantable amyloid hydrogels for promoting stem cell differentiation to neurons. NPG Asia Mater. 2016;8:e304.

    Article  CAS  Google Scholar 

  9. Jin GZ, Kim HW. Effects of type I collagen concentration in hydrogel on the growth and phenotypic expression of rat chondrocytes. Tissue Eng Regen Med. 2017;14:383–91.

    Article  CAS  Google Scholar 

  10. Bae JW, Choi JH, Lee Y, Park KD. Horseradish peroxidase-catalysed in situ-forming hydrogels for tissue-engineering applications. J Tissue Eng Regen Med. 2015;9:1225–32.

    Article  CAS  PubMed  Google Scholar 

  11. Van Nieuwenhove I, Tytgat L, Ryx M, Blondeel P, Stillaert F, Thienpont H, et al. Soft tissue fillers for adipose tissue regeneration: From hydrogel development toward clinical applications. Acta Biomater. 2017;63:37–49.

    Article  CAS  PubMed  Google Scholar 

  12. Saludas L, Pascual-Gil S, Prósper F, Garbayo E, Blanco-Prieto M. Hydrogel based approaches for cardiac tissue engineering. Int J Pharm. 2017;523:454–75.

    Article  CAS  PubMed  Google Scholar 

  13. Song WY, Liu GM, Li J, Luo YG. Bone morphogenetic protein-2 sustained delivery by hydrogels with microspheres repairs rabbit mandibular defects. Tissue Eng Regen Med. 2016;13:750–61.

    Article  CAS  Google Scholar 

  14. Shi Z, Gao X, Ullah MW, Li S, Wang Q, Yang G. Electroconductive natural polymer-based hydrogels. Biomaterials. 2016;111:40–54.

    Article  CAS  PubMed  Google Scholar 

  15. Zhao LZ, Zhou CH, Wang J, Tong DS, Yu WH, Wang H. Recent advances in clay mineral-containing nanocomposite hydrogels. Soft Matter. 2015;11:9229–46.

    Article  CAS  PubMed  Google Scholar 

  16. Park SH, Kim DY, Panta P, Heo JY, Lee HY, Kim JH, et al. An intratumoral injectable, electrostatic, cross-linkable curcumin depot and synergistic enhancement of anticancer activity. NPG Asia Mater. 2017;9:e397.

    Article  CAS  Google Scholar 

  17. Lee JY, Kang YM, Kim ES, Kang ML, Lee B, Kim JH, et al. In vitro and in vivo release of albumin from an electrostatically crosslinked in situ-forming gel. J Mater Chem. 2010;20:3265–71.

    Article  CAS  Google Scholar 

  18. Shinya S, Fukamizo T. Interaction between chitosan and its related enzymes: a review. Int J Biol Macromol. 2017;104:1422–35.

    Article  CAS  PubMed  Google Scholar 

  19. Oliveira NM, Reis RL, Mano JF. The potential of liquid marbles for biomedical applications: a critical review. Adv Healthc Mater. 2017;6:1700192.

    Article  CAS  Google Scholar 

  20. Cho KH, Singh B, Maharjan S, Jang Y, Choi YJ, Cho CS. Local delivery of CTGF siRNA with poly(sorbitol-co-PEI) reduces scar contraction in cutaneous wound healing. Tissue Eng Regen Med. 2017;14:211–20.

    Article  CAS  Google Scholar 

  21. Borges J, Mano JF. Molecular interactions driving the layer-by-layer assembly of multilayers. Chem Rev. 2014;114:8883–942.

    Article  CAS  PubMed  Google Scholar 

  22. Raftery R, O’Brien FJ, Cryan SA. Chitosan for gene delivery and orthopedic tissue engineering applications. Molecules. 2013;18:5611–47.

    Article  CAS  PubMed  Google Scholar 

  23. Jho Y, Yoo HY, Lin Y, Han S, Hwang DS. Molecular and structural basis of low interfacial energy of complex coacervates in water. Adv Colloid Interface Sci. 2017;239:61–73.

    Article  CAS  PubMed  Google Scholar 

  24. Elsaid N, Jackson TL, Elsaid Z, Alqathama A, Somavarapu S. PLGA microparticles entrapping chitosan-based nanoparticles for the ocular delivery of ranibizumab. Mol Pharm. 2016;13:2923–40.

    Article  CAS  PubMed  Google Scholar 

  25. Duque Sánchez L, Brack N, Postma A, Pigram PJ, Meagher L. Surface modification of electrospun fibres for biomedical applications: a focus on radical polymerization methods. Biomaterials. 2016;106:24–45.

    Article  CAS  PubMed  Google Scholar 

  26. Frost SJ, Mawad D, Higgins MJ, Ruprai H, Kuchel R, Tilley RD, et al. Gecko-inspired chitosan adhesive for tissue repair. NPG Asia Mater. 2016;8:e280.

    Article  CAS  Google Scholar 

  27. Sobhani A, Rafienia M, Ahmadian M, Naimi-Jamal MR. Fabrication and characterization of polyphosphazene/calcium phosphate scaffolds containing chitosan microspheres for sustained release of bone morphogenetic protein 2 in bone tissue engineering. Tissue Eng Regen Med. 2017;14:525–38.

    Article  CAS  Google Scholar 

  28. Zhou HY, Jiang LJ, Cao PP, Li JB, Chen XG. Glycerophosphate-based chitosan thermosensitive hydrogels and their biomedical applications. Carbohydr Polym. 2015;117:524–36.

    Article  CAS  PubMed  Google Scholar 

  29. Tahrir FG, Ganji F, Ahooyi TM. Injectable thermosensitive chitosan/glycerophosphate-based hydrogels for tissue engineering and drug delivery applications: a review. Recent Pat Drug Deliv Formul. 2015;9:107–20.

    Article  CAS  PubMed  Google Scholar 

  30. Shimojo AAM, Galdames SEM, Perez AGM, Ito TH, Luzo ACM, Santana MHA. In vitro performance of injectable chitosan-tripolyphosphate scaffolds combined with platelet-rich plasma. Tissue Eng Regen Med. 2016;13:21–30.

    Article  CAS  Google Scholar 

  31. Kim KS, Lee JH, Ahn HH, Lee JY, Lee B, Lee HB, et al. The osteogenic differentiation of rat muscle-derived stem cells in vivo within in situ-forming chitosan scaffolds. Biomaterials. 2008;29:4420–8.

    Article  CAS  PubMed  Google Scholar 

  32. Cho MH, Kim KS, Ahn HH, Kim MS, Kim SH, Khang G, et al. Chitosan gel as an in situ-forming scaffold for rat bone marrow mesenchymal stem cells in vivo. Tissue Eng Part A. 2008;14:1099–108.

    Article  CAS  PubMed  Google Scholar 

  33. Junter GA, Thébault P, Lebrun L. Polysaccharide-based antibiofilm surfaces. Acta Biomater. 2016;30:13–25.

    Article  CAS  PubMed  Google Scholar 

  34. Song L, Li L, He T, Wang N, Yang S, Yang X, et al. Peritoneal adhesion prevention with a biodegradable and injectable N,O-carboxymethyl chitosan-aldehyde hyaluronic acid hydrogel in a rat repeated-injury model. Sci Rep. 2016;6:37600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Alvarez-Lorenzo C, Blanco-Fernandez B, Puga AM, Concheiro A. Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery. Adv Drug Deliv Rev. 2013;65:1148–71.

    Article  CAS  PubMed  Google Scholar 

  36. Abeer MM, Mohd Amin MC, Martin C. A review of bacterial cellulose-based drug delivery systems: their biochemistry, current approaches and future prospects. J Pharm Pharmacol. 2014;66:1047–61.

    CAS  PubMed  Google Scholar 

  37. Yang Y, Liu X, Li Y, Wang Y, Bao C, Chen Y, et al. A postoperative anti-adhesion barrier based on photoinduced imine-crosslinking hydrogel with tissue-adhesive ability. Acta Biomater. 2017;62:199–209.

    Article  CAS  PubMed  Google Scholar 

  38. Kim MS, Kim JH, Min BH, Chun HJ, Han DK, Lee HB. Polymeric scaffolds for regenerative medicine. Polym Rev (Phila Pa). 2011;51:23–52.

    Article  CAS  Google Scholar 

  39. Udoetok IA, Wilson LD, Headley JV. Quaternized cellulose hydrogels as sorbent materials and pickering emulsion stabilizing agents. Materials (Basel). 2016;9:E645.

    Article  CAS  Google Scholar 

  40. Wu Y, Wang L, Qing Y, Yan N, Tian C, Huang Y. A green route to prepare fluorescent and absorbent nano-hybrid hydrogel for water detection. Sci Rep. 2017;7:4380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang W, Zhang X, Teng A, Liu A. Mechanical reinforcement of gelatin hydrogel with nanofiber cellulose as a function of percolation concentration. Int J Biol Macromol. 2017;103:226–33.

    Article  CAS  PubMed  Google Scholar 

  42. Dolan GK, Yakubov GE, Bonilla MR, Lopez-Sanchez P, Stokes JR. Friction, lubrication, and in situ mechanics of poroelastic cellulose hydrogels. Soft Matter. 2017;13:3592–601.

    Article  CAS  PubMed  Google Scholar 

  43. Kim KS, Kang YM, Lee JY, Kim ES, Kim CH, Min BH, et al. Injectable CMC/PEI gel as an in vivo scaffold for demineralized bone matrix. Biomed Mater Eng. 2009;19:381–90.

    CAS  PubMed  Google Scholar 

  44. Nguyen MK, Alsberg E. Bioactive factor delivery strategies from engineered polymer hydrogels for therapeutic medicine. Prog Polym Sci. 2014;39:1235–65.

    Article  CAS  Google Scholar 

  45. Giri TK, Thakur D, Alexander A, Ajazuddin, Badwaik H, Tripathi DK. Alginate based hydrogel as a potential biopolymeric carrier for drug delivery and cell delivery systems: present status and applications. Curr Drug Deliv. 2012;9:539–55.

    Article  CAS  PubMed  Google Scholar 

  46. Mun CH, Hwang JY, Lee SH. Microfluidic spinning of the fibrous alginate scaffolds for modulation of the degradation profile. Tissue Eng Regen Med. 2016;13:140–8.

    Article  CAS  Google Scholar 

  47. Williams PA, Campbell KT, Silva EA. Alginate hydrogels of varied molecular weight distribution enable sustained release of sphingosine-1-phosphate and promote angiogenesis. J Biomed Mater Res A. 2018;106:138–46.

    Article  CAS  PubMed  Google Scholar 

  48. Bauer A, Gu L, Kwee B, Li WA, Dellacherie M, Celiz AD, et al. Hydrogel substrate stress-relaxation regulates the spreading and proliferation of mouse myoblasts. Acta Biomater. 2017;62:82–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mahapatra C, Jin GZ, Kim HW. Alginate-hyaluronic acid-collagen composite hydrogel favorable for the culture of chondrocytes and their phenotype maintenance. Tissue Eng Regan Med. 2016;13:538–46.

    Article  CAS  Google Scholar 

  50. Chen Y, Yan X, Zhao J, Feng H, Li P, Tong Z, et al. Preparation of the chitosan/poly(glutamic acid)/alginate polyelectrolyte complexing hydrogel and study on its drug releasing property. Carbohydr Polym. 2018;191:8–16.

    Article  CAS  PubMed  Google Scholar 

  51. Wei Z, Zhao J, Chen YM, Zhang P, Zhang Q. Self-healing polysaccharide-based hydrogels as injectable carriers for neural stem cells. Sci Rep. 2016;6:37841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lym JS, Nguyen QV, Ahn da W, Huynh CT, Jae HJ, Kim YI, et al. Sulfamethazine-based pH-sensitive hydrogels with potential application for transcatheter arterial chemoembolization therapy. Acta Biomater. 2016;41:253–63.

    Article  CAS  PubMed  Google Scholar 

  53. Li X, Liu L, Wang X, Ok YS, Elliott JAW, Chang SX, et al. Flexible and self-healing aqueous supercapacitors for low temperature applications: polyampholyte gel electrolytes with biochar electrodes. Sci Rep. 2017;7:1685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shim SW, Kwon DY, Park JH, Kim JH, Chun HJ, Koh YJ, et al. Preparation of zwitterionic sulfobetaine end-functionalized poly(ethylene glycol)-b-poly(caprolactone) diblock copolymers and examination of their thermogelling properties. J Polym Sci A Ploym Chem. 2014;52:2185–91.

    Article  CAS  Google Scholar 

  55. Jung BK, Oh E, Hong J, Lee Y, Park KD, Yun CO. A hydrogel matrix prolongs persistence and promotes specific localization of an oncolytic adenovirus in a tumor by restricting nonspecific shedding and an antiviral immune response. Biomaterials. 2017;147:26–38.

    Article  CAS  PubMed  Google Scholar 

  56. Kim DY, Kwon DY, Kwon JS, Park JH, Park SH, Oh HJ, et al. Synergistic anti-tumor activity through combinational intratumoral injection of an in situ injectable drug depot. Biomaterials. 2016;85:232–45.

    Article  CAS  PubMed  Google Scholar 

  57. Wang C, Wang X, Dong K, Luo J, Zhang Q, Cheng Y. Injectable and responsively degradable hydrogel for personalized photothermal therapy. Biomaterials. 2016;104:129–37.

    Article  CAS  PubMed  Google Scholar 

  58. Kanazawa T, Tamano K, Sogabe K, Endo T, Ibaraki H, Takashima Y, et al. Intra-articular retention and anti-arthritic effects in collagen-induced arthritis model mice by injectable small interfering RNA containing hydrogel. Biol Pharm Bull. 2017;40:1929–33.

    Article  CAS  PubMed  Google Scholar 

  59. Cheng OT, Souzdalnitski D, Vrooman B, Cheng J. Evidence-based knee injections for the management of arthritis. Pain Med. 2012;13:740–53.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Park JH, Park SH, Lee HY, Lee JW, Lee BK, Lee BY, et al. An injectable, electrostatically interacting drug depot for the treatment of rheumatoid arthritis. Biomaterials. 2018;154:86–98.

    Article  CAS  PubMed  Google Scholar 

  61. Kim K, Park JH, Park SH, Lee HY, Kim JH, Kim MS. An injectable, click-cross-linked small intestinal submucosa drug depot for the treatment of rheumatoid arthritis. Adv Healthc Mater. 2016;5:3105–17.

    Article  CAS  PubMed  Google Scholar 

  62. Wang P, Zhuo X, Chu W, Tang X. Exenatide-loaded microsphere/thermosensitive hydrogel long-acting delivery system with high drug bioactivity. Int J Pharm. 2017;528:62–75.

    Article  CAS  PubMed  Google Scholar 

  63. Zhao F, Wu D, Yao D, Guo R, Wang W, Dong A, et al. An injectable particle-hydrogel hybrid system for glucose-regulatory insulin delivery. Acta Biomater. 2017;64:334–45.

    Article  CAS  PubMed  Google Scholar 

  64. Shen YI, Cho H, Papa AE, Burke JA, Chan XY, Duh EJ, et al. Engineered human vascularized constructs accelerate diabetic wound healing. Biomaterials. 2016;102:107–19.

    Article  CAS  PubMed  Google Scholar 

  65. Tendulkar S, Mirmalek-Sani SH, Childers C, Saul J, Opara EC, Ramasubramanian MK. A three-dimensional microfluidic approach to scaling up microencapsulation of cells. Biomed Microdevices. 2012;14:461–9.

    Article  CAS  PubMed  Google Scholar 

  66. Tong X, Yang F. Recent progress in developing injectable matrices for enhancing cell delivery and tissue regeneration. Adv Healthc Mater. 2018;7:e1701065.

    Article  CAS  PubMed  Google Scholar 

  67. Lee BH, Shirahama H, Kim MH, Lee JH, Cho NJ, Tan LP. Colloidal templating of highly ordered gelatin methacryloyl-based hydrogel platforms for three-dimensional tissue analogues. NPG Asia Mater. 2017;9:e412.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Pukyong National University Research Abroad Fund in 2014 (C-D-2014-0713).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moon Suk Kim.

Ethics declarations

Conflicts of interest

The authors have no financial conflicts of interest.

Ethical statement

There are no animal experiments carried out for this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, J.Y., Lee, B., Kang, T.W. et al. Electrostatically Interactive Injectable Hydrogels for Drug Delivery. Tissue Eng Regen Med 15, 513–520 (2018). https://doi.org/10.1007/s13770-018-0146-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-018-0146-6

Keywords

Navigation