Skip to main content

Advertisement

Log in

Crosstalk between reactive oxygen species and pro-inflammatory markers in developing various chronic diseases: a review

  • Review
  • Published:
Applied Biological Chemistry Submit manuscript

Abstract

The inflammation process in the human body plays a central role in the pathogenesis of many chronic diseases. In addition, reactive oxygen species (ROS) exert potentially a decisive role in human body, particularly in physiological and pathological process. The chronic inflammation state could generate several types of diseases such as cancer, atherosclerosis, diabetes mellitus and arthritis, especially if it is concomitant with high levels of pro-inflammatory markers and ROS. The respiratory burst of inflammatory cells during inflammation increases the production and accumulation of ROS. However, ROS regulate various types of kinases and transcription factors such nuclear factor-kappa B which is related to the activation of pro-inflammatory genes. The exact crosstalk between pro-inflammatory markers and ROS in terms of pathogenesis and development of serious diseases is still ambitious. Many studies have been attempting to determine the mechanistic mutual relationship between ROS and pro-inflammatory markers. Therefore hereby, we review the hypothetical relationship between ROS and pro-inflammatory markers in which they have been proposed to initiate cancer, atherosclerosis, diabetes mellitus and arthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ROS:

Reactive oxygen species

NO:

Nitric oxide

TNF-α:

Tumor necrosis factor-alpha

COX:

Cyclooxygenase

PG:

Prostaglandine

NF-κB:

Nuclear factor-kappa B

IL:

Interleukin

MCP-1:

Monocyte chemotactic protein-1

References

  1. Serhan CN, Chiang N, Dyke Van TE (2008) Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol 8(5):349–361

    Article  CAS  Google Scholar 

  2. Guzik T, Mangalat D, Korbut R (2006) Adipocytokines—novel link between inflammation and vascular function? J Physiol Pharmacol 57(4):505–528

    CAS  Google Scholar 

  3. McGeer EG, Klegeris A, McGeer PL (2005) Inflammation, the complement system and the diseases of aging. Neurobiol Aging 26:94–97

    Article  CAS  Google Scholar 

  4. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic. Biol. Med. 49:1603–1616

    CAS  Google Scholar 

  5. Flohé L, Brigelius-Flohé R, Saliou C, Traber M, Packer L (1997) Redox regulation of NF-κB activation. Free Radical Biol Med 6:1115–1126

    Article  Google Scholar 

  6. Ferrero-Miliani L, Nielsen OH, Andersen PS, Girardin SE (2007) Chronic inflammation: importance of NOD2 and NALP3 in interleukin-1beta generation. Clin Exp Immunol 147(2):061127015327006

    Google Scholar 

  7. Keane MP, Strieter RM (2000) Chemokine signalling in inflammation. Crit Care Med 28:13–26

    Article  Google Scholar 

  8. Ley K, Laudanna C, Cybulsky MI, Nourshargh S (2007) Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Immunol 7:678–689

    Article  CAS  Google Scholar 

  9. Muller WA (2003) Leukocyte–endothelial-cell interactions in leukocyte transmigration and the inflammatory response. Trends Immunol 24:327–334

    CAS  Google Scholar 

  10. Wang HB, Wang JT, Zhang L, Geng ZH, Xu WL, Xu T, Huo Y, Zhu X, Plow ED, Chen M, Geng JG (2007) P-selectin primes leukocyte integrin activation during inflammation. Nat Immunol 8:882–892

    Article  CAS  Google Scholar 

  11. Mukaida N, Matsumoto T, Yokoi K, Harada A, Matsushima K (1998) Inhibition of neutrophil-mediated acute inflammatory injury by an antibody against interleukin-8 (IL-8). Inflamm Res 47:151–157

    Article  Google Scholar 

  12. Chen CJ, Kono H, Golenbock D, Reed G, Akira S, Rock KL (2007) Identification of a key pathway required for the sterile inflammatory response triggered by dying cells. Nat Med 13:851–856

    Article  CAS  Google Scholar 

  13. Daniel T, Thobe BM, Chaudhary IH, Choudhary MA, Hubbard WJ, Schwacha MG (2007) Regulation of the postburn wound inflammatory response by γδ T-cells. Shock 28:278–283

    Article  CAS  Google Scholar 

  14. Mannaioni PF, Bello MG, Masini E (1997) Platelets and inflammation: role of platelet-derived growth factor, adhesion molecules and histamine. Inflamm Res 46:4–18

    Article  CAS  Google Scholar 

  15. Andra J, Gutsmann T, Garidel P, Brandenburg K (2006) Mechanisms of endotoxin neutralization by synthetic cationic compounds. J Endotoxin Res 12:261–277

    Google Scholar 

  16. Grimble R (1998) Nutritional modulation of cytokine biology. Nutrition 14:634–640

    Article  CAS  Google Scholar 

  17. Serhan CN, Savill J (2005) Resolution of inflammation: the beginnning programs the end. Nat Immunol 6:1191–1197

    Article  CAS  Google Scholar 

  18. Levy BD, Clish CB, Schmidt B, Gronert K, Serhan CN (2001) Lipid mediator class switching during acute inflammation: signals in resolution. Nat Immunol 2:612–619

    Article  CAS  Google Scholar 

  19. Van Dyke TE, Serhan CN (2003) Resolution of Inflammation: a new paradigm for the pathogenesis of periodontal diseases. J Dent Res 82:82–90

    Article  Google Scholar 

  20. Serhan CN, Jain A, Marleau S, Clish C, Kantarci A, Behbeham B, Colgan SP, Stahl GL, Merched A, Petasis NA, Chan L, Van Dyke TE (2003) Reduced inflammation and tissuw damage in transgenic rabbits overexpressing 15-Lipoxygenase and endogenous anti-inflammatory lipid mediators. J Immunol 171:6856–6865

    Article  CAS  Google Scholar 

  21. Bannenberg GL, Chiang N, Ariel A, Arita M, Tjonahen E, Gotlinger KH, Hong S, Serhan CN (2005) Molecular circuits of rsolution: formation and actions of resolvins and protectins. J Immunol 174:4345–4355

    Article  CAS  Google Scholar 

  22. Bellingan GJ, Caldwell H, Howie SE, Dransfield I, Haslett C (1996) In vivo fate of the inflammatory macrophage during the resolution of inflammation: inflammatory macrophages do not die locally, but emigrate to the draining lymph nodes. J Immunol 157:2577–2585

    CAS  Google Scholar 

  23. Jackson JR, Seed MP, Kircher CH, Willoughby DA, Winkler JD (1997) The codependence of angiogenesis and chronic inflammation. FASEB J 11:457–465

    CAS  Google Scholar 

  24. Yamamoto T (2008) Molecular mechanism of monocyte predominant inffilteration in chronic inflammation: mediation by a noval monocyte chemotactic factor, s19 ribosomal protein dimer. Pathol Int 50:863–871

    Article  Google Scholar 

  25. Limuro Y, Gallucci RM, Luster MI, Kono H, Thurman RG (2003) Antibodies to tumor necrosis factor alfa attenuate hepatic necrosis and inflammation caused by chronic exposure to ethanol in the rat. Hepatology 26:1530–1537

    Google Scholar 

  26. Bonniaud P, Margetts P, Ask K, Flander K, Gauldie J, Kolb M (2005) TGF-β and Smad3 signaling link inflammation to chronic fibrogenesis. J Immunol 175:5390–5395

    Article  CAS  Google Scholar 

  27. Sica A, Schioppa T, Mantovani A, Allavena P (2006) Tumor-associated macrophages are a distinct M2 polarized population promoting tumor progression: potential targets of anti-cancer therapy. Eur J Cancer 42:717–727

    Article  CAS  Google Scholar 

  28. Decologne N, Kolb M, Margetts PJ, Menetrier F, Artur Y, Garrido C, Gauldie J, Camus P, Bonniaud P (2007) TGF-β1 induces progressive pleural scarring and subpleural fibrosis. J Immunol 179:6043–6051

    Article  CAS  Google Scholar 

  29. Marin V, Julian AM, Gres S, Boulay V, Bongrand P, Farnarier C, Kaplanski G (2001) The IL-6-Soluble IL-6Rα Autocrine loop of endothelial activation as an intermediate between acute and chronic inflammation: an experimental model involving thrombin. J Inflamm 167:3435–3442

    CAS  Google Scholar 

  30. Conti P, DiGioacchino M (2001) MCP-1 and RANTES are mediators of acute and chronic inflammation. Allergy and Asthma Proceedings. 22:133–137

    Article  CAS  Google Scholar 

  31. Karin M, Lawrence T, Nizet V (2006) Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell 124:823–835

    Article  CAS  Google Scholar 

  32. Batista ML, Santos RVT, Cunha LM, Mattos K, Oliveira EM, Costa Seelaender MCL, Rosa LFBP (2006) Changes in the pro-inflammatory cytokine production and peritoneal macrophage function in rats with chronic heart failure. Cytokine 34:284–290

    Article  CAS  Google Scholar 

  33. Andrea L, Jorge L, Antonio C (2009) Macrophage activation: classical vs. alternative. Macrophages Dendritic Cells 531:29–43

    Article  CAS  Google Scholar 

  34. Corriveau CC, Madara PJ, Van Dervort AL, Tropea MM, Wesley RA, Danner RL (1998) Effects of nitric oxide on chemotaxis and endotoxin- induced interleukin-8 production in human neutrophils. J Infect Dis 177:116–126

    Article  CAS  Google Scholar 

  35. Wang S, Yan L, Wesley RA, Danner RL (1997) Nitric oxide increases tumor necrosis factor production in differentiated U937 cells by decreasing cyclic AMP. J Biol Chem 272:5959–5969

    Article  CAS  Google Scholar 

  36. Ding X, Hiraku Y, Ma N, Kato T, Saito K, Nagahama M, Semba R, Kuribayashi K, Kawanishi S (2005) Inducible nitric oxide synthase-dependant DNA damage in mouse model of inflammatory bowel disease. Cancer Sci 96(3):157–163

    Article  CAS  Google Scholar 

  37. Hata AN, Breyer RM (2004) Pharmacology and signaling of prostaglandin receptors: multiple roles in inflammation and immune modulation. Pharmacol Ther 103:147–166

    Article  CAS  Google Scholar 

  38. Anderson GD, Hauser SD, McGarity KL, Bremer ME, Isakson PC, Gregory SA (1996) Selective inhibition of cyclooxygenase (COX)-2 reverses inflammation and expression of COX-2 and interleukin-6 in rat adjuvant arthritis. J Clin Investig 97:2672–2679

    Article  CAS  Google Scholar 

  39. Portanova JP, Zhang Y, Anderson GD, Hauser SD, Masferrer JL, Seibert K, Gregory SA, Isakson PC (1996) Selective neutralization of prostaglandin E2 blocks inflammation, hyperalgesia and interleukin 6 production in vivo. J Exp Med 184:883–891

    Article  CAS  Google Scholar 

  40. Mark BP, Gideon MH (2003) C-reactive protein: a critical update. J Clin Investig 111(12):1805–1812

    Article  CAS  Google Scholar 

  41. Semple SJ (2006) C-reactive protein—biological functions, cardiovascular disease and physical exercise. SaJSM 18(1):24–28

    Google Scholar 

  42. Ross R (1999) Atherosclerosis-an inflammatory disease. N Engl J Med 340:115–126

    Article  CAS  Google Scholar 

  43. Sowers M, Jannausch M, Stein E, Jamadar D, Hochberg M, Lachance L (2002) C-reactive protein as a biomarker of emergent osteoarthritis. Osteoarthr Cartil 10:595–601

    Article  Google Scholar 

  44. Erlinger TP, Platz EA, Rifai N, Helzlsouer KJ (2004) C-reactive protein and the risk of incident colorectal cancer. JAMA 291:585–590

    Article  CAS  Google Scholar 

  45. Simon HU, Haj-Yehia A, Levi-Schaffer F (2000) Role of reactive oxygen species (ROS) in the apoptosis induction. Apoptosis 5:415–418

    Article  CAS  Google Scholar 

  46. Stief TW (2003) The physiology and pharmacology of singlet oxygen. Med Hypoth 60:567–572

    Article  CAS  Google Scholar 

  47. Packer L, Weber SU, Rimbach G (2001) Molecular aspects of alpha-tocotrienol antioxidant action and cell signalling. J Nutr 131(2):369S–373S

    CAS  Google Scholar 

  48. Patil S, Jolly CI, Narayanan S (2000) free radical scavenging activity of acacia catechu and Rotula aquatica: implications in cancer therapy. Indian Drugs 40:328–332

    Google Scholar 

  49. D’Autreaux B, Toledano MB (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8(10):813–824

    Article  CAS  Google Scholar 

  50. Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82(1):47–95

    Article  CAS  Google Scholar 

  51. Hussain SP, Hofseth LJ, Harris CC (2003) Radical causes of cancer. Nat Rev Cancer 3:276–285

    Article  CAS  Google Scholar 

  52. Mathy-Hartert M, Deby-Dupont GP, Reginster JY, Ayache N, Pujol JP, Henrotin YE (2002) Regulation by reactive oxygen species of interleukin-1beta, nitric oxide and prostaglandin E(2) production by human chondrocytes. Osteoarthr Cartil 10:547–555

    Article  CAS  Google Scholar 

  53. Turpaev KT (2002) Reactive oxygen species and regulation of gene expression. Biochem (Mosc) 67:281–292

    Article  CAS  Google Scholar 

  54. Gilroy DW, Colville-Nash PR, McMaster S, Sawatzky DA, Willoughby DA, Lawrence T (2003) Inducible cyclooxygenase-derived 15-deoxy(Delta)12-14PGJ2 brings about acute inflammatory resolution in rat pleurisy by inducing neutrophil and macrophage apoptosis. FASEB J 17:2269–2271

    CAS  Google Scholar 

  55. Goossens V, Grooten J, De Vos K, Fiers W (1995) Direct evidence for tumor necrosis factor-induced mitochondrial reactive oxygen intermediates and their involvement in cytotoxicity. Proc Natl Acad Sci USA 92:8115–8119

    Article  CAS  Google Scholar 

  56. Ioanna K, Theodoros V, Angeliki X, Spyros Z, Andreas P, Charis R (2002) Production of interleukin-6 by skeletal myotubes role of reactive oxygen species. Am J Respir Cell Mol Biol 26:587–593

    Article  Google Scholar 

  57. Edwina N, Vishva M (2013) Mitochondrial reactive oxygen species drive pro-inflammatory cytokine production. J Exp Med 208(3):417–420

    Google Scholar 

  58. Bulua AC, Simon A, Maddipati R, Pelletier M, Park H, Kim Y, Sack MN, Kastner DL, Siegel RM (2011) Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J Exp Med 208:519–533

    Article  CAS  Google Scholar 

  59. Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M (2005) Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120:649–661

    Article  CAS  Google Scholar 

  60. Chen F, Castranova V, Shi X, Demers LM (1999) New insights into the role of nuclear factor-kappaB, a ubiquitous transcription factor in the initiation of diseases. Clin Chem 45:7–17

    CAS  Google Scholar 

  61. Paul PT, Gary SF (2001) NF-κB: a key role in inflammatory diseases. Clin Invest. 107(1):7–11

    Article  Google Scholar 

  62. Woo CH, Eom YW, Yoo MH, You HJ, Han HJ, Song WK, Yoo YJ, Chun JS, Kim JH (2000) Tumor necrosis factor-alpha generates reactive oxygen species via a cytosolic phospholipase A2-linked cascade. J Biol Chem 275:32357–32362

    Article  CAS  Google Scholar 

  63. http://www.cancer.gov/cancertopics/what-is-cancer

  64. Wiseman H, Halliwell B (1996) Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J 313:17–29

    Article  CAS  Google Scholar 

  65. Moss SF, Blaser MJ (2005) Mechanisms of disease: inflammation and the origins of cancer. Nat Clin Pract Oncol 2(2):90–97

    Article  CAS  Google Scholar 

  66. Gallo O, Masini E, Morbidelli L, Franchi A, Fini-Storchi I, Vergari WA, Ziche M (1998) Role of nitric oxide in angiogenesis and tumor progression in head and neck cancer. J Natl Cancer Inst 90:587–596

    Article  CAS  Google Scholar 

  67. Fukumura D, Kashiwagi S, Jain RK (2006) The role of nitric oxide in tumor progression. Nat Rev Cancer 6:521–534

    Article  CAS  Google Scholar 

  68. Chen R, Alvero AB, Silasi DA, Kelly MG, Fest S, Visintin I, Leiser A, Schwartz PE, Rutherford T, Mor G (2008) Regulation of IKKbeta by miR-199a affects NF-κB activity in ovarian cancer cells. Oncogene 27:4712–4723

    Article  CAS  Google Scholar 

  69. Tsujii M, Kawano S, Tsuji S, Sawaoka H, Hori M, Raymond N (1998) Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell 93:705–716

    Article  CAS  Google Scholar 

  70. Wang W, Bergh A, Damber JE (2005) Cyclooxygenase-2 expression correlates with local chronic inflammation and tumor neovascularization in human prostate cancer. Clin Cancer Res 11:3250–3256

    Article  CAS  Google Scholar 

  71. Zhao QT, Yue SQ, Cui Z, Wang Q, Cui X, Zhai HH, Zhang LH, Dou KF (2007) Potential involvement of the cyclooxygenase-2 in hepato cellular carcinoma-associated angiogenesis. Life Sci 80:484–492

    Article  CAS  Google Scholar 

  72. Shi X, Chen G, Xing H, Weng D, Bai X, Ma D (2007) VEGF-C, VEGFR-3 and COX-2 enhances growth and metastasis of human cervical carcinoma cell lines in vitro. Oncol Rep 18:241–247

    CAS  Google Scholar 

  73. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  Google Scholar 

  74. Behrend L, Henderson G, Zwacka RM (2003) Reactive oxygen species in oncogenic transformation. Biochem Soc Trans 31:1441–1444

    Article  CAS  Google Scholar 

  75. Bergamini CM, Gambetti S, Dondi A, Cervellati C (2004) Oxygen, reactive oxygen species and tissue damage. Curr Pharm Des 10:1611–1626

    Article  CAS  Google Scholar 

  76. Gulam W, Haseeb A (2006) Reactive oxygen species: role in the development of cancer and various chronic conditions. J Carcinog 5:14

    Article  CAS  Google Scholar 

  77. Bohr VA, Dianov GL (1999) Oxidative DNA damage processing in nuclear and mitochondrial DNA. Biochimie 81:155–160

    Article  CAS  Google Scholar 

  78. Marcus SC, Mark DE, Miral D, Joseph L (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB 17:1195–1214

    Article  CAS  Google Scholar 

  79. Burdon RH, Alliangana D, Gill V (1999) Hydrogen peroxide in relation to proliferation and apoptosis in BHK-21 hamster fibroblasts. Free Radic Res 24:81–93

    Article  Google Scholar 

  80. Lin MT, Yen ML, Lin CY, Kuo ML (2003) Inhibition of vascular endothelial growth factor-induced angiogenesis by resveratrol through interruption of Src-dependent vascular endothelial cadherin tyrosine phosphorylation. Mol Pharmacol 64:1029–1036

    Article  CAS  Google Scholar 

  81. Monaghan-Benson E, Burridge K (2009) The regulation of vascular endothelial growth factor-induced microvascular permeability requires Rac and reactive oxygen species. J Biol Chem 284:25602–25611

    Article  CAS  Google Scholar 

  82. Doo JL, Sang WK (2013) Reactive oxygen species and tumor metastasis. Mol Cells 35:93–98

    Article  CAS  Google Scholar 

  83. Murray CJ, Lopez AD (1997) Global mortality, disability, and the contribution of risk factors: global burden of disease study. Lancet 349:1436–1442

    Article  CAS  Google Scholar 

  84. Blasi C (2008) The autoimmune origin of atherosclerosis. Atherosclerosis 201:17–32

    Article  CAS  Google Scholar 

  85. Wick G, Knoflach M, Xu Q (2004) Autoimmune and inflammatory mechanisms in atherosclerosis. Annu Rev Immunol 22:361–403

    Article  CAS  Google Scholar 

  86. Madamanchi NR, Runge M (2007) Mitochondrial dysfunction in atherosclerosis. Circ Res 100:460–473

    Article  CAS  Google Scholar 

  87. Armitage JD, Vanniasinkam SH, Lindsey NJ (2004) The role of endothelial cell reactive antibodies in peripheral vascular disease. Autoimmun Rev 3:39–44

    Article  CAS  Google Scholar 

  88. Hopper PL, Hooper JJ (2005) Loss of defense against stress: diabetes and heat shock proteins. Diabetes Technol Ther 7:204–208

    Article  Google Scholar 

  89. Philip LH, Paul LH (2009) Inflammation, heat shock proteins, and type 2diabetes. Cell Stress Chaperones 14:113–115

    Article  CAS  Google Scholar 

  90. Perschinka H, Mayr M, Millonig G, Mayerl C, Zee R, Morrison SG, Morrison RP, Xu Q, Wick G (2003) Cross-reactive B-cell epitopes of microbial and human heat shock protein 60/65 in atherosclerosis. Arterioscler Thromb Vasc Biol 23:1060–1065

    Article  CAS  Google Scholar 

  91. Billack B, Heck DE, Mariano TM, Gardner CR, Sur R, Laskin DL, Laskin JD (2002) Induction of cyclooxygenase-2 by heat shock protein 60 in macrophages and endothelial cells. Cell Physiol 283:C1267–C1277

    Article  CAS  Google Scholar 

  92. Kolodgie FD, Burke AP, Nakazawa G, Virmani R (2007) Is pathological intima thickening the key to understanding early plaque progression in human atherosclerosis disease? Arterioscler Thromb Vasc Biol 27:986–989

    Article  CAS  Google Scholar 

  93. Skalen K, Gustafssom M, Rydberg EK, Hulten LM, Wiklund O, Innerarity TL, Boren J (2002) Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature 417:750–754

    Article  CAS  Google Scholar 

  94. Leitinger N (2003) Oxidized phospholipids as modulators of inflammation in atherosclerosis. Curr Opin Lipidol 14:421–430

    Article  CAS  Google Scholar 

  95. Norata GD, Pirillo A, Pellegatta F, Inoue H, Catapano AL (2004) Native LDL and oxidized LDL modulate cyclooxygenase-2 expression in HUVEC through a p38-MAPK, NF-κB, CRE dependent pathway and affect PGE2 synthesis. Int J Mol Med 14:353–359

    CAS  Google Scholar 

  96. Chenevard R, Hurlimann D, Bechir M, Enseleit F, Spieker L, Hermann M, Riesen W, Gay S, Gay RE, Neidhart M, Michel B, Luscher TM, Noll G, Ruschitzka F (2003) Selective COX-2 inhibition improves endothelial function in coronary artery disease. Circulation 107:405–409

    Article  Google Scholar 

  97. Wollenhaupt J, Zeidler H (1998) Undifferentiated arthritis and reactive arthritis. Curr Opin Rheumatol 10(4):306–313

    Article  CAS  Google Scholar 

  98. Bridges PS (1992) Prehistoric arthritis in the Americas. Annu Rev Anthropol 21:67–91

    Article  Google Scholar 

  99. Bonnet CS, Walsh DA (2005) Osteoarthritis, angiogenesis and inflammation. Rheumatology 44:7–16

    Article  CAS  Google Scholar 

  100. Benito MJ, Veale DJ, Fitzgerald O, Berg WB, Bresnihan B (2005) Synovial tissue inflammation in early and late osteoarthritis. Ann Rheum Dis 64:1263–1267

    Article  CAS  Google Scholar 

  101. Goldring MB, Berenbaum F (2004) The regulation of chondrocyte function by proinflammatory mediators: prostaglandins and nitric oxide. Clin Orthop Relat Res 427:S37–S46

    Article  Google Scholar 

  102. Cho ML, Kang JW, Moon YM, Nam HJ, Jhun JY, Heo SB (2006) STAT3 and NF-κB signal pathway is required for IL-23-mediated IL-17 production in spontaneous arthritis animal model IL-1 receptor antagonist-deficient mice. J Immunol 176(9):5652–5661

    Article  CAS  Google Scholar 

  103. Gracia JA (2004) Interleukin-18 as a potential target in inflammatory arthritis. Clin Exp Immunol 136(3):402–404

    Article  CAS  Google Scholar 

  104. Plater-Zyberk C, Joosten LA, Helsen MM, Koenders MI, Baeuerle PA, Van den Berg WB (2009) Combined blockade of GM-CSF and IL-17 pathways potently suppresses chronic destructive arthritis in a TNF-α independent mouse model. Ann Rheum Dis 68(5):721–728

    Article  CAS  Google Scholar 

  105. Simmonds RE, Foxwell BM (2008) Signalling, inflammation and arthritis: NF–kappaB and its relevance to arthritis and inflammation. Rheumatology 47:584–590

    Article  CAS  Google Scholar 

  106. Kuhn KA, Kulik L, Tomooka B, Braschler KJ, Arend WP, Robinson WH, Holers VM (2006) Antibodies against citrullinated proteins enhance tissue injury in experimental autoimmune arthritis. J Clin Invest 116(4):961–973

    Article  CAS  Google Scholar 

  107. Sturnieks DL, Tiedemann A, Chapman K, Munro B, Murray SM, Lord SR (2004) Physiological risk factors for falls in older people with lower limb arthritis. J Rheumatol 31(11):2272–2279

    Google Scholar 

  108. Montecucco F, Mach F (2009) Common inflammatory mediators orchestrate pathophysiological processes in rheumatoid arthritis and atherosclerosis. Rheumatology 48:11–22

    Article  CAS  Google Scholar 

  109. Moulton PJ, Hiran TS, Goldring MB, Hancock JT (1997) Detection of protein and mRNA of various components of the NADPH oxidase complex in an immortalized human chondrocyte line. Br J Rheumatol 36(5):522–529

    Article  CAS  Google Scholar 

  110. Hitchon CA, Ei-Gabalawy HS (2004) Oxidation in rheumatoid arthritis. Arthritis Res Ther 6(6):265–278

    Article  Google Scholar 

  111. Lloyds D, Davies EV, Williams BD, Hallett MB (1996) Tyrosine phosphorylation in neutrophils from synovial fluid of patients with rheumatoid arthritis. Br J Rheumatol 35(9):846–852

    Article  CAS  Google Scholar 

  112. De Leo ME, Tranghese A, Passantino M, Mordente A, Lizzio MM, Galeotti T (2002) Manganese superoxide dismutase, glutathione peroxidase, and total radical trapping antioxidant capacity in active rheumatoid arthritis. J Rheumatol 29(10):2245–2246

    Google Scholar 

  113. Karatas F, Ozates I, Canatan H, Halifeoglu I, Karatepe H (2003) Antioxidant status and lipid peroxidation in patients with rheumatoid arthritis. Indian J Med Res 118:178–181

    CAS  Google Scholar 

  114. Center for Disease Control and Prevention (CDC) (2008) Diabetes data and trends. Number (in millions) of persons with diagnosed diabetes, United States, 1980–2005. http://www.cdc.gov/diabetes/statistics/prev/national/figpersons.htm. Accessed February 9, 2008

  115. Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27:1047–1053

    Article  Google Scholar 

  116. Singh R, Shaw J, Zimmet P (2004) Epidemiology of child-hood type 2 diabetes in the developing world. Pediatr Diabetes 5:154–168

    Article  CAS  Google Scholar 

  117. Treszl A, Szereday L, Doria A, King GL, Orban T (2004) Elevated C-reactive protein levels do not correspond to autoimmunity in type 1 diabetes. Diabetes Care 27:2769–2770

    Article  Google Scholar 

  118. Devaraj S, Cheung AT, Jialal I, Steven CG, Danh N, Nicole G, Thomas A (2007) Evidence of increased inflammation and microcirculatory abnormalities in patients with type 1 diabetes and their role in microvascular complications. Diabetes 56:2790–2796

    Article  CAS  Google Scholar 

  119. Schram MT, Chaturvedi N, Schalkwijk C, Giorgino F, Ebeling P, Fuller JH, Stehouwer CD (2003) The EURODIAB Prospective Complications Study Group: vascular risk factors and markers of endothelial function as determinants of inflammatory markers in type 1 diabetes. Diabates Care 26:2165–2173

    Article  Google Scholar 

  120. Chiung-Mei W, Chang-Hua C, Yao-Yi H, Chih-Chan L, Yen-Wen L, Wei-Chuan T (2010) Increased C-reactive protein is associated with future development of diabetes mellitus in essential hypertensive patients. Heart Vessels 25:386–391

    Article  Google Scholar 

  121. Sarvetnick N, Shizuru J, Liggitt D, Martin L, McIntyre B, Gregory A, Parslow T, Stewart T (1990) Loss of pancreatic islet tolerance induced by beta-cell expression of interferon-gamma. Nature 346:844–847

    Article  CAS  Google Scholar 

  122. Varanasi V, Avanesyan L, Schumann MD, Chervonsky VA (2012) Cytotoxic mechanisms employed by mouse T cells to destroy pancreatic β-cells. Diabetes 61:2862–2870

    Article  CAS  Google Scholar 

  123. Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM (2001) C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 286:327–334

    Article  CAS  Google Scholar 

  124. Vozarova B, Weyer C, Lindsay RS, Pratley RE, Bogardus C, Tataranni PA (2002) High white blood cell count is associated with a worsening of insulin sensitivity and predicts the development of type 2 diabetes. Diabetes 51:455–461

    Article  CAS  Google Scholar 

  125. Frank BH, James BM, Tricia YL, Nader R, Jo AE (2004) Inflammatory markers and risk of developing type 2 diabetes in women. Diabetes 53(3):693–700

    Article  Google Scholar 

  126. Baynes JW, Thorpe SR (1999) Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes 48:1–9

    Article  CAS  Google Scholar 

  127. Maritim C, Sanders RA, Watkins JB (2003) Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol 17(1):24–38

    Article  CAS  Google Scholar 

  128. Ceriello A (2000) Oxidative stress and glycemic regulation. Metabolism 49(2, suppl 1):27–29

    Article  CAS  Google Scholar 

  129. Ceriello A, Motz E (2004) Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler Thromb Vasc Biol 24:816–823

    Article  CAS  Google Scholar 

  130. Lindsey EP, Katarzyna AB, Polly AH, John AC, Hubert MT (2013) The role of reactive oxygen species and proinflammatory cytokines in type 1 diabetes pathogenesis. Ann NY Acad Sci 1281:16–35

    Article  CAS  Google Scholar 

  131. West IC (2000) Radicals and oxidative stress in Diabetes. Diabet Med 17:171–180

    Article  CAS  Google Scholar 

  132. Yong IC, Raymond ND (2007) NSAIDs and cancer prevention: targets downstream of COX-2. Annu Rev Med 58:239–252

    Article  CAS  Google Scholar 

  133. Funk C, Fitzgerald G (2007) COX-2 inhibitors and cardiovascular risk. J Cardiovasc Pharmacol 50:470–478

    Article  CAS  Google Scholar 

  134. Hochberg MC (2002) New directions in symptomatic therapy for patients with osteoarthritis and rheumatoid arthritis. Semin Arthritis Rheum 32:4–14

    Article  CAS  Google Scholar 

  135. Tahereh T, Angelica MW, Jane MJ, Robert AF, Yashige K (2000) COX-2 inhibition prevents insulin-dependent diabetes in low-dose streptozotocin-treated mice. Biochem Biophys Res Commun 273:699–704

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We thank our group research members for their thorough review and helpful discussions during the preparation of this review and library for assistance with collection of references.

Authors’ contribution

YR involved in study design and concepts, manuscript and figure preparation, editing of manuscript. FA helped in editing manuscript and revising. AMA involved in final approval and editing manuscript. HA and HK helped in revising manuscript and final approval. AF contributed to editing manuscript and final approval.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdah Md Akim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranneh, Y., Ali, F., Akim, A.M. et al. Crosstalk between reactive oxygen species and pro-inflammatory markers in developing various chronic diseases: a review. Appl Biol Chem 60, 327–338 (2017). https://doi.org/10.1007/s13765-017-0285-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13765-017-0285-9

Keywords

Navigation