Skip to main content

Advertisement

Log in

Nanotechnology advancement in the elimination of chemical toxins from air spectrums

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The global decline in the atmosphere caused by the release of hazardous material, produced by the entry of chemical and physical or biological elements from anthropogenic, geogenic, or biogenic activities, is becoming a severe problem worldwide. This raises many human and animal health problems, and it can wipe out all living things, further complicating the use of conventional treatment technologies. However, the majority of the work has been done for the removal of oxides of carbon, nitrogen, and sulfur; however, dangerous chemicals such as hydrocarbons, aliphatic, aromatic, complex compounds and chlorofluorocarbons that are released into the air from a variety of sources must be eradicated before they reach an unsafe level. Hence, this study illuminates current advances in nanotechnology and their critical role to include the overpowering need to monitor and treat growing dangerous wastes more efficiently at low cost and with less energy. Interestingly, the main features of this article are to outline the benefits of nanotechnology above traditional methods quickly and to relevantly highlight the removal of toxic chemicals, bioaerosols, heavy metals, and organic and inorganic pollutants from the air spectrum. Nanotechnological methods such as thermal breakdown, adsorption, absorption, air filtration, and photocatalytic degradation will be used in the future to get rid of these dangerous substances. Nanotechnology possesses three essential characteristics that enable its application to environmental areas: purification and remediation (cleanup), contaminants identification (detection and sensing), and pollution prevention. In conclusion, nanotechnology is utilized to avoid pollution from a variety of sources that are damaging to various systems owing to its unique physical and chemical features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  • Absalan Y, Alabada R, Ryabov M, Tolstoy V, Butusov L, Nikolskiy V, Kovalchukova O (2020) Removing harmful organic compounds from the polluted water by a novel synthesized cobalt (II) and titanium (IV) containing photocatalyst under visible light. Environ Nanotechnol Monit Manag 14:1003

    Google Scholar 

  • Abushanab WS, Moustafa EB, Melaibari AA, Kotov AD, Mosleh AO (2021) A novel comparative study based on the economic feasibility of the ceramic nanoparticles role’s in improving the properties of the AA5250 nanocomposites. Coatings 11(8):977

    Article  CAS  Google Scholar 

  • Aggarwal V, Tuli HS, Varol A, Thakral F, Yerer MB, Sak K, Sethi G (2019) Role of reactive oxygen species in cancer progression: molecular mechanisms and recent advancements. Biomolecules 9(11):735

    Article  CAS  Google Scholar 

  • Aisida SO, Akpa PA, Ahmad I, Maaza M, Ezema FI (2019) Influence of PVA, PVP and PEG doping on the optical, structural, morphological and magnetic properties of zinc ferrite nanoparticles produced by thermal method. Physica B 571:130–136

    Article  CAS  Google Scholar 

  • Akram R, Turan V, Hammad HM, Ahmad S, Hussain S (2018) Fate of organic and inorganic pollutants in paddy soils. In: Environmental pollution of paddy soils. Springer, Cham, pp 197–214

  • Al-Dhahebi AM, Saheed MSM, Mustapha M (2012) Effects of solution concentration on the synthesis of polyvinylidene fluoride (PVDF) electrospun nanofibers. Mater Today Proc 12(4):23–34

    Google Scholar 

  • Alias NH, Jaafar J, Samitsu S, Ismail AF, Othman MH, Rahman MA, Othman NH, Yusof N, Aziz F, Mohd TA (2020) Efficient removal of partially hydrolysed polyacrylamide in polymer-flooding produced water using photocatalytic graphitic carbon nitride nanofibres. Arab J Chem 13:4341–4349

    Article  CAS  Google Scholar 

  • Almashhori K, Ali TA, Saeed A, Alwafi R, Aly M, Al-Hazmi FE (2020) Antibacterial and photocatalytic activities of controllable (anatase/rutile) mixed-phase TiO2 nano photocatalysts synthesized via a microwave-assisted sol-gel method. N J Chem 44:562–570

    Article  CAS  Google Scholar 

  • Bandala ER, Andres-Octaviano J, Pastrana P, Torres LG (2006) Removal of aldrin, dieldrin, heptachlor, and heptachlor epoxide using activated carbon and/or Pseudomonas fluorescens free cell cultures. J Environ Sci Health B 41(5):553–569

    Article  Google Scholar 

  • Behera A, Rajak DK, Jeyasubramanian K (2022) Fabrication of nanostructures with excellent self-cleaning properties. In: Design, fabrication, and characterization of multifunctional nanomaterials, pp 449–478

  • Blumberg KO, Walsh MP, Pera C (2003) Low-sulfur gasoline & diesel: the key to lower vehicle emissions. http://www.theicct.org/documents/Low-Sulfur_Exec_Summ_ICCT_2003

  • Bonfim DP, Cruz FG, Bretas RE, Guerra VG, Aguiar ML (2021) A sustainable recycling alternative: electrospun PET-membranes for air nanofiltration. Polymers 13(7):1166

    Article  CAS  Google Scholar 

  • Botkin DB, Keller EA (2007) Environmental science: earth as a living planet. Wiley, Hoboken

    Google Scholar 

  • Bugli F, Cacaci M, Palmieri V, Di Santo R, Torelli R, Ciasca G, Papi M (2018) Curcumin-loaded graphene oxide flakes as an effective antibacterial system against methicillin-resistant Staphylococcus aureus. Interface Focus 8(3):20170059

    Article  CAS  Google Scholar 

  • Calderón-Garcidueñas L, Gónzalez-Maciel A, Reynoso-Robles R, Delgado-Chávez R, Mukherjee PS, Kulesza RJ, Torres-Jardón R, Ávila-Ramírez J, Villarreal-Ríos R (2018) Hallmarks of Alzheimer disease are evolving relentlessly in Metropolitan Mexico City infants, children and young adults. APOE4 carriers have higher suicide risk and higher odds of reaching NFT stage V at≤ 40 years of age. Environ Res 164:475–487

    Article  Google Scholar 

  • Celebioglu A, Sen HS, Durgun E, Uyar T (2016) Molecular entrapment of volatile organic compounds (VOCs) by electrospun cyclodextrin nanofibers. Chemosphere 144:736–744

    Article  CAS  Google Scholar 

  • Chakraborty A, Ruzimuradov O, Gupta RK, Cho J, Prakash J (2022) TiO2 nanoflower photocatalysts: Synthesis, modifications and applications in wastewater treatment for removal of emerging organic pollutants. Environ Res 212:113550

    Article  CAS  Google Scholar 

  • Chang MB, Lee HM, Wu F, Lai CR (2004) Simultaneous removal of nitrogen oxide/nitrogen dioxide/sulfur dioxide from gas streams by combined plasma scrubbing technology. J Air Waste Manag Assoc 54(8):941–949

    Article  CAS  Google Scholar 

  • Chatterjee S, Lee DS, Lee MW, Woo SH (2010) Enhanced molar sorption ratio for naphthalene through the impregnation of surfactant into chitosan hydrogel beads. Bioresour Technol 101:4315–4321

    Article  CAS  Google Scholar 

  • Chen Y, Gu P, Schulte N, Zhou X, Mara S, Croes BE, Herner JD, Vijayan A (2022) A new mobile monitoring approach to characterize community-scale air pollution patterns and identify local high pollution zones. Atmos Environ 118936

  • Chu M, Li Y, Cui K, Jian J, Lu S, Gao P, Wu X (2022) Enhanced photocatalytic reduction of carbon dioxide into carbon monoxide by electric field generation and defect engineering in TiO2. Environ Chem Lett 1–9

  • Cragg C (1992) Cleaning up motor car pollution. New Fuels Technol 2(1):123–131

    Google Scholar 

  • Cui B, Peng H, Xia H, Guo X (2013) Use of nanotechnology for the removal toxins from air. Technol 103:251

  • Dai WJ, Wu P, Liu D, Hu J, Cao Y, Liu TZ, Okoli CP, Wang B, Li L (2020) Adsorption of polycyclic aromatic hydrocarbons from aqueous solution by organic montmorillonite sodium alginate nanocomposites. Chemosphere 251:126074

    Article  CAS  Google Scholar 

  • Delucchi MA (2000) Environmental externalities of motor-vehicle use in the US. J Transp Econ Policy 34:135–168

    Google Scholar 

  • Deng H, Yi H, Tang X, Yu Q, Ning P, Yang L (2012) Adsorption equilibrium for sulfur dioxide, nitric oxide, carbon dioxide, nitrogen on 13X and 5A zeolites. Chem Eng J 188:77–85

    Article  CAS  Google Scholar 

  • Dhiman N, Awasthi R, Sharma B, Kharkwal H, Kulkarni GT (2021) Lipid nanoparticles as carriers for bioactive delivery. Front Chem 9:580118

    Article  CAS  Google Scholar 

  • Emenike EC, Adeniyi AG, Omuku PE, Okwu KC, Iwuozor KO (2022) Recent advances in nano-adsorbents for the sequestration of copper from water. J Water Process Eng 47:102715

    Article  Google Scholar 

  • Eskandari P, Farhadian M, Nazar ARS, Jeon BH (2019) Adsorption and photodegradation efficiency of TiO2/Fe2O3/PAC and TiO2/Fe2O3/zeolite nano photocatalysts for the removal of cyanide. Ind Eng Chem Res 58(5):2099–2112

    Article  CAS  Google Scholar 

  • Esteve W, Budzinski H, Villenave E (2006) Relative rate constants for the heterogeneous reactions of NO2 and OH radicals with polycyclic aromatic hydrocarbons adsorbed on carbonaceous particles. Part 2: PAHs adsorbed on diesel particulate exhaust SRM 1650a. Atmos Environ 40(2):201–211

    Article  CAS  Google Scholar 

  • Eygeris Y, Gupta M, Kim J, Sahay G (2021) Chemistry of lipid nanoparticles for RNA delivery. Acc Chem Res 55(1):2–12

    Article  Google Scholar 

  • Fei L, Bilal M, Qamar SA, Imran HM, Riasat A, Jahangeer M, Iqbal HM (2022) Nano-remediation technologies for the sustainable mitigation of persistent organic pollutants. Environ Res 211:113060

    Article  CAS  Google Scholar 

  • Gagliardi A, Giuliano E, Venkateswararao E, Fresta M, Bulotta S, Awasthi V, Cosco D (2021) Biodegradable polymeric nanoparticles for drug delivery to solid tumors. Front Pharmacol 12:601626

    Article  CAS  Google Scholar 

  • Ghenaatian HR, Baei MT, Hashemian S (2013) Zn12O12 nano-cage as a promising adsorbent for CS2 capture. Superlattice Microst 58:198–204

    Article  CAS  Google Scholar 

  • Gondal AH, Bhat RA, Gómez RL, Areche FO, Huaman JT (2022). Advances in plastic pollution prevention and their fragile effects on soil, water, and air continuums. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-022-04607-9

    Article  Google Scholar 

  • Gupta S, Das SK, Pradeep T et al (2015) Simultaneous dehalogenation and removal of persistent halocarbon pesticides from water using graphene nanocomposites: a case study of lindane. ACS Sustain Chem Eng 3:1155–1163

    Article  Google Scholar 

  • Hadrup N, Saber AT, Kyjovska ZO, Jacobsen NR, Vippola M, Sarlin E (2020) Pulmonary toxicity of Fe2O3, ZnFe2O4, NiFe2O4 and NiZnFe4O8 nanomaterials: inflammation and DNA strand breaks. Environ Toxicol Pharmacol 74(2020):103303

    Article  CAS  Google Scholar 

  • Haga SB (2022) Cleaning up the environment. In: The book of genes and genomes. Springer, New York, pp 159–168

  • Hashimah N, Jaafar J, Samitsu S, Yusof N (2018) Photocatalytic degradation of oil field produced water using graphitic carbon nitride embedded in electrospun polyacrylonitrile nanofibers. Chemosphere 204:79–86

    Article  Google Scholar 

  • He M, Shi H, Zhao X, Yu Y, Qu B (2013) Immobilization of Pb and Cd in contaminated soil using nano-crystallite hydroxyapatite. Proc Environ Sci 18:657–665

    Article  CAS  Google Scholar 

  • Health and environmental linkages initiative (HELI) (2022) Environment and health in developing countries. https://www.who.int/heli/risks/ehindevcoun/en/

  • Heidari A, Younesi H (2020) Synthesis, characterization and life cycle assessment of carbon nanospheres from waste tires pyrolysis over ferrocene catalyst. J Environ Chem Eng 103669

  • Hou X, Zaks T, Langer R, Dong Y (2021) Lipid nanoparticles for mRNA delivery. Nat Rev Mater 6(12):1078–1094

    Article  CAS  Google Scholar 

  • Hussain M, Ceccarelli R, Marchisio DL, Fino D, Russo N, Geobaldo F (2010) Synthesis, characterization, and photocatalytic application of novel TiO2 nanoparticles. J Chem Eng 157:45–51

    Article  CAS  Google Scholar 

  • Izumi Y, Itoi T, Peng S, Oka K, Shibata Y (2009) Site structure and photocatalytic role of sulfur or nitrogen-doped titanium oxide with uniform mesopores under visible light. J Phys Chem C 113(16):6706–6718

    Article  CAS  Google Scholar 

  • Janani R, Gurunathan B, Sivakumar K, Varjani S, Ngo HH, Gnansounou E (2022) Advancements in heavy metals removal from effluents employing nano-adsorbents: way towards cleaner production. Environ Res 203:111815

    Article  Google Scholar 

  • Jusoh MNH, Yap CN, Hadibarata T, Jusoh H, Najib MZM (2021) Nanomaterial for inorganic pollutant remediation. Environ Toxicol 1(1):18–25

    Article  CAS  Google Scholar 

  • Khan A, Malik S, Ali N, Nguyen TA, Bilal M (2022) Nanoadsorbents as a green approach for removal of environmental pollutants. In: Nano-bioremediation: fundamentals and applications. Elsevier, pp 435–454

  • Klonowska A, Heulin T, Vermeglio A (2005) Selenite and tellurite reduction by Shewanellaoneidensis. Appl Environ Microbiol 71(9):5607–5609

    Article  CAS  Google Scholar 

  • Kolosnjaj-Tabi J, Just KB, Hartman Y, Laoudi S, Boudjemaa DA (2015) Anthropogenic carbon nanotubes found in the airways of Parisianchildren. EBioMedicine 2(11):1697–1704

    Article  Google Scholar 

  • Kolosnjaj-Tabi J, Szwarc H, Moussa F (2017) Carbon nanotubes: culprit or witness of air pollution? Nano Today 15:11–14

    Article  CAS  Google Scholar 

  • Kosco J, Gonzalez-Carrero S, Howells CT, Zhang W, Moser M, Sheelamanthula R et al (2022) Oligoethylene glycol side chains increase charge generation in organic semiconductor nanoparticles for enhanced photocatalytic hydrogen evolution. Adv Mater 34(22):2105007

    Article  CAS  Google Scholar 

  • Kumar P, Morawska L, Martani C, Biskos G, Neophytou M, Di Sabatino S et al (2015) The rise of low-cost sensing for managing air pollution in cities. Environ Int 75:199–205

    Article  Google Scholar 

  • Kumar R, Gupta K, Bordoloi N (2022) Nanotechnology: an emerging strategy for combating air pollution. In: Environmental sustainability and industries. Elsevier, pp 117–128

  • Kunde SS, Wairkar S (2021) Platelet membrane camouflaged nanoparticles: biomimetic architecture for targeted therapy. Int J Pharm 598:120395

    Article  CAS  Google Scholar 

  • Langenbach T (2013) Persistence and bioaccumulation of persistent organic pollutants (POPs). Applied bioremediation–active and passive approaches, pp 123–132

  • Lee YL, Lee K, Ko CH, Roh HS (2021) Optimization of nano-catalysts for application in compact reformers. Chem Eng J 134299

  • Lithoxoos GP, Labropoulos A, Peristeras LD, Kanellopoulos N, Samios J, Economou IG (2010) Adsorption of N2, CH4, CO and CO2 gases in single walled carbon nanotubes: a combined experimental and Monte Carlo molecular simulation study. J Supercrit Fluids 55:510–523

    Article  CAS  Google Scholar 

  • Liu R, Zhao D (2007a) In situ immobilization of Cu(II) in soils using a new class of iron phosphate nanoparticles. Chemosphere 68:1867–1876

    Article  CAS  Google Scholar 

  • Liu R, Zhao D (2007b) Reducing leachability and bioaccessibility of lead in soils using a new class of stabilized iron phosphate nanoparticles. Water Res 41:2491–2502

    Article  CAS  Google Scholar 

  • Liu J, Zheng Y, Hong Z, Cai K, Zhao F, Han H (2016) Microbial synthesis of highly dispersed PdAu alloy for enhanced electrocatalysis. Sci Adv 2(9):1600858

    Article  Google Scholar 

  • Long XL, Xiao WD, Yuan WK (2004) Removal of nitric oxide and sulfur dioxide from flue gas using a hexamminecobalt (II)/iodide solution. Ind Eng Chem Res 43(15):4048–4053

    Article  CAS  Google Scholar 

  • Lonkar SP, Pillai VV, Alhassan SM (2018) Facile and scalable production of heterostructured ZnS–ZnO/graphene nano-photocatalysts for environmental remediation. Sci Rep 8:13401

    Article  Google Scholar 

  • Lyu C, Zhao P, Xie J, Dong S, Liu J, Rao C, Fu J (2021) Electrospinning of nanofibrous membrane and its applications in air filtration: a review. Nanomaterials 11(6):1501

    Article  CAS  Google Scholar 

  • MacMurdo MG, Mulloy KB, Felix CW, Curtis AJ, Ajayakumar J, Curtis J (2022) Ambient air pollution exposure among individuals experiencing unsheltered homelessness. Environ Health Perspect 130(2):027701

    Article  Google Scholar 

  • Mahdavian L, Mousavi SE (2016) Diameter of single-walled carbon nanotubes (SWCNTs) as an influential factor in detecting and degradation PCBs. Polycycl Aromat Compd 39:14–22

    Article  Google Scholar 

  • Maher BA, Ahmed IAM, Karloukovski V, MacLaren DA, Foulds PG, Allsop D, Mann DM, Torres-Jardón R, Calderon-Garciduenas L (2016) Magnetite pollution nanoparticles in the human brain. Proc Natl Acad Sci USA 113(39):10797–10801

    Article  CAS  Google Scholar 

  • Malakootian M, Khatami M, Ahmadian M, Asadzadeh SN (2020) Biogenic silver nanoparticles/hydrogen peroxide/ozone: efficient degradation of reactive blue 19. BioNanoScience 10(1):34–41

    Article  Google Scholar 

  • Malini B, Allen Gnana Raj G (2018) Synthesis, characterization and photocatalytic activity of cobalt doped TiO2 nano photocatalysts for rose bengal dye degradation under daylight illumination. Chem Sci Trans 7(4):687–695

  • Mammadova S, Rostamnia S (2022) The ecogeographical impact of air pollution in the Azerbaijan cities: possible plant/synthetic-based nanomaterial solutions. J Nanomater

  • Manisalidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou E (2020) Environmental and health impacts of air pollution: a review. Front Public Health 14

  • Mansoori GA (2017) An introduction to nanoscience and nanotechnology. In: Nanoscience and plant–soil systems. Springer, Berlin, pp 3–20

  • Masih J, Masih A, Kulshrestha A, Singhvi R, Taneja A (2010) Characteristics of polycyclic aromatic hydrocarbons in indoor and outdoor atmosphere in the North central part of India. J Hazard Mater 177(1–3):190–198

    Article  CAS  Google Scholar 

  • McLaughlin H (2007) Advances in nanotechnology. London, p. 210. ISBN 9781412908481

  • McNaughton D (2011) From the womb to the tomb: Obesity and maternal responsibility. Crit Public Health 21(2):179–190

    Article  Google Scholar 

  • Mehrabi M, Javanbakht V (2018) Photocatalytic degradation of cationic and anionic dyes by a novel nano photocatalyst of TiO2/ZnTiO3/αFe2O3 by ultraviolet light irradiation. J Mater Sci Mater Electron 29:9908–9919

    Article  CAS  Google Scholar 

  • Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (2007) The fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, New York

    Google Scholar 

  • Mody VV, Siwale R, Singh A, Mody HR (2010) Introduction to metallic nanoparticles. J Pharm Bioallied Sci 2(4):282

    Article  CAS  Google Scholar 

  • Mok YS, Lee HJ (2006) Removal of sulfur dioxide and nitrogen oxides by using ozone injection and absorption–reduction technique. Fuel Process Technol 87(7):591–597

    Article  CAS  Google Scholar 

  • Mousavi M, Habibi-Yangjeh A, Seifzadeh D, Nakata K, Vadivel S (2019) Exceptional photocatalytic activity for g-C3N4 activated by H2O2 and integrated with Bi2S3 and Fe3O4 nanoparticles for removal of organic and inorganic pollutants. Adv Powder Technol 30(3):524–537

    Article  CAS  Google Scholar 

  • Murgolo S, Petronella F, Ciannarella R, Comparelli R, Agostiano A, Curri ML, Mascolo G (2015) UV and solar-based photocatalytic degradation of organic pollutants by nano-sized TiO2 grown on carbon nanotubes. Catal Today 240:114–124

    Article  CAS  Google Scholar 

  • Murshed M, Alam R, Ansarin A (2021) The environmental Kuznets curve hypothesis for Bangladesh: the importance of natural gas, liquefied petroleum gas, and hydropower consumption. Environ Sci Pollut Res 28(14):17208–17227

    Article  Google Scholar 

  • Nasr MS, Esmaeilnezhad E, Choi HJ (2021) Effect of carbon-based and metal-based nanoparticles on enhanced oil recovery: a review. J Mole Liquids 338:116903

    Article  Google Scholar 

  • Negrete-Bolagay D, Zamora-Ledezma C, Chuya-Sumba C, De Sousa FB, Whitehead D, Alexis F, Guerrero VH (2021) Persistent organic pollutants: The trade-off between potential risks and sustainable remediation methods. J Environ Manag 300:113737

    Article  CAS  Google Scholar 

  • Nurmi JT, Tratnyek PG, Sarathy V, Baer DR, Amonette JE, Pecher K et al (2005) Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environ Sci Technol 39(5):1221–1230

    Article  CAS  Google Scholar 

  • Pan X, Yang MQ, Fu X (2013) Defective TiO2 with oxygen vacancies: synthesis, properties, and photocatalytic applications. Nanoscale 5:3601–3614

    Article  CAS  Google Scholar 

  • Pandey R, Masood F, Singh HP, Batish DR (2017) Polycyclic aromatic hydrocarbons as environmental pollutants: a review. Int J Adv Res Sci Eng Technol 6:1361–1369

  • Pantidos N (2014) Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. J Nanomed Nanotechnol 05(05). https://doi.org/10.4172/2157-7439.1000233

  • Parmar KR, Dora DTK, Pant KK, Roy S (2019) An ultra-light flexible aerogel-based on methane derived CNTs as a reinforcing agent in silica-CMC matrix for efficient oil adsorption. J Hazard Mater 375:206–215

    Article  CAS  Google Scholar 

  • Poornaprakash B, Ramu S, Subramanyam K, Kim YL, Kumar M, Reddy MSP (2021) Robust ferromagnetism of ZnO:(Ni+ Er) diluted magnetic semiconductor nanoparticles for spintronic applications. Ceram Int 47(13):18557–18564

    Article  CAS  Google Scholar 

  • Puma GL, Bono A, Krishnaiah D, Collin JG (2008) Preparation of titanium dioxide photocatalyst loaded onto activated carbon support using chemical vapor deposition: a review paper. J Hazard Mater 157(2–3):209–219

  • Puri N, Gupta A, Mishra A (2021) Recent advances on nano-adsorbents and nanomembranes for the remediation of water. J Clean Prod 322:129051

    Article  CAS  Google Scholar 

  • Ramasundaram S, Son A, Gashaw M, Shim S, Hyup S, Chul Y, Lee C, Lee J, Won S (2015) Photocatalytic applications of paperlike poly(vinylidene fluoride)–titanium dioxide hybrids fabricated using a combination of electrospinning and electrospraying. J Hazard Mater 285:267–276

    Article  CAS  Google Scholar 

  • Rasheed T, Adeel M, Nabeel F, Bilal M, Iqbal HMN (2019) TiO2/SiO2 decorated nanostructured carbon materials as a multifunctional platform for emerging pollutants removal. Sci Total Environ 688:299–311

    Article  CAS  Google Scholar 

  • Raut VS (2021) Determining the application of nanomaterials to environmental remediation. Emerg Chall Environ Earth Sci 1:1–6

    Google Scholar 

  • Rivas BL, Pooley SA, Luna M, Geckeler KE (2001) Synthesis of water-soluble polymers containing sulfonic acid and amine moieties for the recovery of metal ions using ultrafiltration. J Appl Polym Sci 82:22–30

    Article  CAS  Google Scholar 

  • Roberts S (2019) Exploration of NO2 and PM2.5 air pollution and mental health problems using high-resolution data in London-based children from a UK longitudinal cohort study. Psychiatry Res 272:8–17

    Article  CAS  Google Scholar 

  • Rönkkö T, Kuuluvainen H, Karjalainen P, Keskinen J, Hillamo R, Niemi JV, Pirjola L et al (2017) Traffic is a major source of atmospheric nanocluster aerosol. Proc Natl Acad Sci USA 114(29):7549–7554

    Article  Google Scholar 

  • Ryan LCH, Darrius TWL, Jun TH (2021) Investigating the use of phosphate removing organisms in bioremediation. In: IRC-SET. Springer, Berlin, pp 703–715

  • Ryason PR, Harkins J (1967) Studies on a new method of simultaneously removing sulfur dioxide and oxides of nitrogen from combustion gases. J Air Pollut Control Assoc 17(12):796–799

    Article  CAS  Google Scholar 

  • Saber AT, Mortensen A, Szarek J, Jacobsen NR, Levin M, Koponen IK (2019) Toxicity of pristine and paint-embedded TiO2 nanomaterials. Hum Exp Toxicol 38(1):11–24

    Article  CAS  Google Scholar 

  • Sala A, Brisset H, Margaillan A, Mullot JU, Branger C (2022) Electrochemical sensors modified with ion-imprinted polymers for metal ion detection. TrAC Trends Anal Chem 116536

  • Saleem H, Zaidi SJ, Ismail AF, Goh PS (2022a) Advances of nanomaterials for air pollution remediation and their impacts on the environment. Chemosphere 287:132083

    Article  CAS  Google Scholar 

  • Saleem H, Zaidi SJ, Ismail AF, Goh PS (2022b). Nanotechnology in air pollution remediation. Nanotechnol Environ Remediat 59–76.

  • Saleh TA, Shuaib TD, Danmaliki GI, Al-Daous MA (2015) Carbon-based nanomaterials for desulfurization: classification, preparation, and evaluation. In: Applying nanotechnology to the desulfurization process in petroleum engineering, p 154

  • Sanaeepur H, Amooghin AE, Shirazi MMA, Pishnamazi M, Shirazian S (2022) Water desalination and ion removal using mixed matrix electrospun nanofibrous membranes: A critical review. Desalination 521:115350

    Article  CAS  Google Scholar 

  • Sathishkumar P, Sweena R, Wu JJ, Anandan S (2011) Synthesis of CuO–ZnO nano photocatalyst for visible light assisted degradation of a textile dye in aqueous solution. J Chem Eng 171(1):136–140

    Article  CAS  Google Scholar 

  • Schröfel A, Kratošová G, Šafařík I, Šafaříková M, Raška I, Shor LM (2014) Applications of biosynthesized metallic nanoparticles—a review. Acta Biomater 10(10):4023–4042

    Article  Google Scholar 

  • Simshauser P, Gilmore J (2022) Climate change policy discontinuity & Australia’s 2016–2021 renewable investment supercycle. Energy Policy 160:112648

    Article  Google Scholar 

  • Sitko R, Turek E, Zawisza B (2013) Adsorption of divalent metal ions from aqueous solutions using graphene oxide. Dalton Trans 42:5682–5689

    Article  CAS  Google Scholar 

  • Sun B, Li Q, Zheng M, Su G, Lin S, Wu M, Meng B (2020) Recent advances in the removal of persistent organic pollutants (POPs) using multifunctional materials: a review. Environ Pollut 265:114908

    Article  CAS  Google Scholar 

  • Sun C, Zou Y, Qin C, Chen M, Li X, Zhang B, Wu X (2022) Solar absorption characteristics of SiO2@Au core-shell composite nanorods for the direct absorption solar collector. Renew Energy 189:402–411

    Article  CAS  Google Scholar 

  • Terna AD, Elemike EE, Mbonu JI, Osafile OE, Ezeani RO (2021) The future of semiconductors nanoparticles: synthesis, properties and applications. Mater Sci Eng B 272:115363

    Article  CAS  Google Scholar 

  • Tian H, Li J, Shen Q, Wang H, Hao Z, Zou L, Hu Q (2009) Using shell-tunable mesoporous Fe3O4 HMS and magnetic separation to remove DDT from aqueous media. J Hazard Mater 171:459–464

    Article  CAS  Google Scholar 

  • Tian G (2021) Applications of green solvents in toxic gases removal. In: Green sustainable process for chemical and environmental engineering and science. Elsevier, pp 149–201

  • Tran TT, Sheng P, Huang C, Li J, Chen L (2012) Role of TiO2 based nanoparticles in air remediation. Chem Eng J 210–425

  • Tsan YT, Chen DY, Liu PY, Kristiani E, Nguyen KLP, Yang CT (2022) The prediction of influenza-like illness and respiratory disease using LSTM and ARIMA. Int J Environ Res Public Health 19(3):1858

    Article  CAS  Google Scholar 

  • Uddin Z, Ahmad F, Ullan T, Nawab Y, Ahmad S, Azam F et al (2021) Recent trends in water purification using electrospun nanofibrous membranes. Int J Environ Sci Technol 1–28

  • US EPA (2021) Integrated science assessment for particulate matter (final report). US Environmental Protection Agency, Washington, DC, EPA/600/R-08/139F. https://www.epa.gov/pm-pollution/health-and-environmental-effects-particulate-matter-pm

  • Vivek P, Rekha M, Steephen A, Kowsalya M, Magesh M (2021) Meticulous review on potential nano-sized catalysts for air and water purifiers. Iranian Journal of Catalysis 11(4):331–345

    CAS  Google Scholar 

  • Wang HY, Lua AC (2012) Development of metallic nickel nanoparticle catalyst for the decomposition of methane into hydrogen and carbon nanofibers. J Phys Chem 116:26765–26775. https://doi.org/10.1021/jp306519t

    Article  CAS  Google Scholar 

  • Wang Y, Zhu Y, Wu S (2013) A new nano CaO-based CO2 adsorbent prepared using an adsorption phase technique. Chem Eng J 218:39–45. https://doi.org/10.1016/j.cej.2012.11.095

    Article  CAS  Google Scholar 

  • Wang K, Zhao P, Guo X, Li Y, Han D, Chao Y (2014) Enhancement of reactivity in Li4SiO4-based sorbents from the nano-sized rice husk ash for high-temperature CO2 capture. Energy Convers Manag 81:447–454. https://doi.org/10.1016/j.enconman.2014.02.054

    Article  CAS  Google Scholar 

  • Wang M, Xin Y, Cao H, Li W, Hua Y, Webster TJ et al (2021a) Recent advances in mesenchymal stem cell membrane-coated nanoparticles for enhanced drug delivery. Biomater Sci 9(4):1088–1103

    Article  CAS  Google Scholar 

  • Wang N, Dheen ST, Fuh JYH, Kumar AS (2021b) A review of multi-functional ceramic nanoparticles in 3D printed bone tissue engineering. Bioprinting 23:e00146

    Article  Google Scholar 

  • Wasewar KL, Singh S, Kansal SK (2020) Process intensification of treatment of inorganic water pollutants. Inorg Pollut Water 245–271

  • Wei SC, Fan S, Lien CW, Unnikrishnan B, Wang YS, Chu HW, Huang CC, Hsu PH, Chang HT (2018) Graphene oxide membrane as an efficient extraction and ionization substrate for spray-mass spectrometric analysis of malachite green and its metabolite in fish samples. Anal Chim Acta 1003:42–48

    Article  CAS  Google Scholar 

  • Wu M, Gordon RE, Herbert R, Padilla M, Moline J, Mendelson D, Litle V, Travis WD, Gil J (2009) Case report: lung disease in world trade center responders exposed to dust and smoke: carbon nanotubes found in the lungs of world trade center patients and dust samples. Environ Health Perspect 118(4):499–504

    Article  Google Scholar 

  • Xiong Z, He F, Zhao DY, Barnett MO (2009) Immobilization of mercury in sediment using stabilized iron sulfide nanoparticles. Water Res 43:5171–5179

    Article  CAS  Google Scholar 

  • Xu Y, Zhao D (2007) Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles. Water Res 41:2101–2108

    Article  CAS  Google Scholar 

  • Xue P, Wu H, Lu Y, Zhu X (2018) Recent progress in molten salt synthesis of low-dimensional perovskite oxide nanostructures, structural characterization, properties, and functional applications: a review. J Mater Sci Technol 34(6):914–930

    Article  CAS  Google Scholar 

  • Yang X, Shen Z, Zhang B, Yang J, Hong WX, Zhuang Z, Liu J (2013) Silica nanoparticles capture atmospheric lead: implications in the Treatment of environmental heavy metal pollution. Chemosphere 90:653–656

    Article  CAS  Google Scholar 

  • Yang L, Zheng M, Zhao Y, Yang Y, Li C, Liu G (2019) Unintentional persistent organic pollutants in cement kilns co-processing solid wastes. Ecotoxicol Environ Saf 182:109373

    Article  CAS  Google Scholar 

  • Yang J, Zhang X, Liu C, Wang Z, Deng L, Feng C et al (2021) Biologically modified nanoparticles as theranostic bionanomaterials. Prog Mater Sci 118:100768

    Article  CAS  Google Scholar 

  • Yildiz O, Bradford PD (2013) Aligned carbon nanotube sheet high-efficiency particulate air filters. Carbon 64:295–304

    Article  CAS  Google Scholar 

  • Zha Z, Li G, Lv Y, Liu L, He J, Xu W, Huang F (2022) The effects of air pollution on the lung cancer mortality in rural areas of eastern China: a multi-region study. Environm Sci Pollu Res 1–14

  • Zhang L, Zhang G, Wang S, Peng J, Cui W (2016) Cation-functionalized silica nanoparticle as an adsorbent to selectively adsorb anionic dye from aqueous solutions. Environ Prog Sustain Energy 35:1070–1077

    Article  Google Scholar 

  • Zhi D, Lin Y, Jiang L, Zhou Y, Huang A, Yang J, Luo L (2020) Remediation of persistent organic pollutants in aqueous systems by electrochemical activation of persulfates: a review. J Environ Manag 260:110125

    Article  CAS  Google Scholar 

Download references

Acknowledgements

All the authors are highly thankful to the Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan, for their moral support.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Aqarab Husnain Gondal contributed to conceptualization, proof reading, editing and main draft preparation, Mohammad Al Zubi, Muhammad Jamil contributed to conceptual idea, manuscript preparation. Muhammad Sibt-e-Ali, Vishal dagar, Muhammad kashif and Suleman khan contributed to English editing of manuscript.

Corresponding author

Correspondence to A. H. Gondal.

Ethics declarations

Conflict of interest

All the authors have no conflict of interest each other.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Editorial responsibility: Parveen Fatemeh Rupani.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gondal, A.H. Nanotechnology advancement in the elimination of chemical toxins from air spectrums. Int. J. Environ. Sci. Technol. 20, 12775–12792 (2023). https://doi.org/10.1007/s13762-023-04902-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-023-04902-z

Keywords

Navigation