Skip to main content
Log in

Estimation of ground-level O3 using soft computing techniques: case study of Amritsar, Punjab State, India

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Over the years, many organizations across the globe have conducted various studies pertaining to air pollution and its ill effects. The results of these studies substantially conclude that a plethora of people succumbs to the adversities caused by the ever-increasing air pollutants. In this investigation, M5P, random forest (RF)- and Gaussian process (GP)-based approaches are used to predict the tropospheric ozone for Amritsar, Punjab state of India, metropolitan area. The models proposed were based on ten input parameters viz. particulate matter PM2.5, particulate matter PM10, sulphur dioxide (SO2), nitrogen dioxide (NO2), nitric oxide (NO), ammonia (NH3), temperature (T), solar radiation (SR), wind direction (WD) and wind speed (WS), while the tropospheric ozone (O3) was an output parameter. Three most popular statistical parameters such as correlation coefficient (CC), mean absolute error (MAE) and root mean square error (RMSE) were used for the assessment of the developed models. In comparison, it was found that better results were achieved with random forest-based model with CC value as 0.8850, MAE value as 0.0593 and RMSE value as 0.0772 for testing stage. The suggested models are expected to save cost of instrument, cost of labour work, time and contribute to greater accuracy. A result of sensitivity investigation concludes that the solar radiation is the most influencing parameter in estimating the actual values of O3 based on the current data set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

Download references

Acknowledgements

We are thankful for Central Pollution Control Board, India for providing the data which are used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Sihag.

Ethics declarations

Conflict of interest

There is no conflict of interest among authors.

Additional information

Editorial responsibility: Samareh Mirkia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sihag, P., Pandhiani, S., Sangwan, V. et al. Estimation of ground-level O3 using soft computing techniques: case study of Amritsar, Punjab State, India. Int. J. Environ. Sci. Technol. 19, 5563–5570 (2022). https://doi.org/10.1007/s13762-021-03514-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-021-03514-9

Keywords