Skip to main content

Advertisement

Log in

How land use change can improve air quality status over Kuwait

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Due to the frequent urban air pollution episodes over Kuwait recently, decision-makers and government agencies are struggling for sustainable strategies to optimize urban land use and land cover change (LUCC) and improve air quality. This article is targeting to identify the underlying relationships between dust concentration variations and LUCC, using the numerical modelling approach. The RegCM4 and WRF-CHEM models were employed to explore the impacts of land use change over Kuwait to be Evergreen Broad-leaf instead of Desert. Results reveal that both models performed good estimate in two severe dust storm cases, as they detected these cases with reasonable concentrations compared to the reanalysis data with positive correlation, and the overall mean dust concentrations in the target area declined by approximately 6–50% using RegCM4 and 25% with WRF in both dust episodes. Besides, the LUCC affected the wind directions around the area of LUCC; however, it had no impact on the wind’s strength. These results suggested that LUCC caused by an increase in long trees might be an important factor for the PM10 concentration reduction in Kuwait and would need to be investigated over a longer period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4 
Fig. 5
Fig. 6
Fig. 7
Fig. 8 
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdul-wahab SM, Alamoudi AO, Awad AM, Assiri ME (2017) Synoptic characteristics of dusty spring days over central and eastern Saudi Arabia. Air Qual Atmos Health 10(3):307

    Article  Google Scholar 

  • Alfaro SC, Gomes L (2001) Modelling mineral aerosol production by wind erosion: emission intensities and aerosol size distribution in source areas. J Geophysical Res 106:18075–18084. https://doi.org/10.1029/2000JD900339

    Article  CAS  Google Scholar 

  • Al-Hemoud A, Al-Sudairawi M, Neelamanai S et al (2017) Socioeconomic effect of dust storms in Kuwait. Arab J Geosci 10:18. https://doi.org/10.1007/s12517-016-2816-9

    Article  Google Scholar 

  • AlKheder S, AlKandari A (2020) The impact of dust on Kuwait International Airport operations: a case study. Int J Environ Sci Technol 17:3467–3474. https://doi.org/10.1007/s13762-020-02710-3

    Article  Google Scholar 

  • Arora VK, Boer GJ (2010) Uncertainties in the 20th century carbon budget associated with land use change. Global Change Biol 16:3327–3348

    Article  Google Scholar 

  • Bhattachan A, Okin GS, Zhang J, Vimal S, Lettenmaier DP (2019) Characterizing the role of wind and dust in traffic accidents in California. GeoHealth. https://doi.org/10.1029/2019GH000212

    Article  Google Scholar 

  • Bouet C, Labiadh M, Rajot J, Bergametti G, Marticorena B, Tureaux THD, Ltifi M, Sekrafi S, Feron A (2019) Impact of desert dust on air quality: what is the meaningfulness of daily PM standards in regions close to the sources? Example Southern Tunisia Atmosphere 10:452

    CAS  Google Scholar 

  • Brown KW, Bouhamra W, Lamoureux DP, Evans JS, Koutrakis P (2008) Characterization of Particulate matter for three sites in Kuwait. J Air Waste Manag Assoc 58(8):994–1003. https://doi.org/10.3155/1047-3289.58.8.994

    Article  CAS  Google Scholar 

  • Claussen M, Brovkin V, Ganopolski A (2001) Biogeophysical versus biogeochemical feedbacks of large-scale land cover change. Geophys Res Lett 28:1011–1014

    Article  CAS  Google Scholar 

  • Davin EL, de Noblet-Ducoudré N (2010) Climatic impact of global-scale deforestation: radiative versus nonradiative processes. J Clim 23:97

    Article  Google Scholar 

  • Dickinson RE, Henderson-Sellers A, Kennedy PJ (1993) Biosphere-atmosphere transfer scheme (BATS) version 1e as coupled to the NCAR community climate model. National Center for Atmospheric Research Technical Note NCAR. TN-387+STR

  • de Noblet-Ducoudré N, Boisier JP, Piterman A, Bonan GB, Brovkin V, Cruz F, Delire C, Gayler V, van den Hurk B, Lawrence PJ (2012) Determining robust impacts of land-use-induced land cover changes on surface climate over North America and Eurasia: results from the first set of LUCID experiments. J Clim 25:3261–3281

    Article  Google Scholar 

  • Emanuel KA (1991) A scheme for representing cumulus convection in large-scale models. J. Atmos Sci 48(21):2313–2335

  • Flaounas E, Kotroni V, Lagouvardos K, Klose M, Flamant C, Giannaros TM (2017) Sensitivity of the WRF-CHEM (V3.6.1) model to different dust emission parametrisation: assessment in the broader Mediterranean region. Geosci Model Dev 10:2925–2945. https://doi.org/10.5194/gmd-10-2925-2017

    Article  CAS  Google Scholar 

  • Fritsch JM, Chappell CF (1980) Numerical prediction of convectively driven mesoscale pressure systems. Part 1: convective parameterization. J Atmos Sci 37:1722–1733

    Article  Google Scholar 

  • Ginoux P, Chin M, Tegen I, Prospero JM, Holben B, Dubovik O, Lin SJ (2001) Sources and distributions of dust aerosols simulated with the GOCART model. J Geophys Res 106(D17):20255–20273

    Article  Google Scholar 

  • Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla M, Bi X, Endi N, Diro GT, Nair V, Giuliani G, Turuncoglu UU, Cozzini S, Güttler I, O’Brien T, Tawfik A, Shalaby A, Zakey AS, Steiner AL, Stordal F, Sloan L, Brankovic C (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Climate Res 52:7–29

    Article  Google Scholar 

  • Goudie AS (2014) Desert dust and human health disorders. Environ Int 63:101–113

    Article  CAS  Google Scholar 

  • Grell G (1993) Prognostic evaluation of assumptions used by cumulus parameterizations. Mon Weather Rev 121:764–787. https://doi.org/10.3354/cr01018

    Article  Google Scholar 

  • Grell GA, Peckham SE, Schmitz R, McKeen SA, Frost G, Skamarock WC, Eder B (2005) Fully coupled “online” chemistry within the WRF model. Atmos Environ 39:6957–6975. https://doi.org/10.1016/j.atmosenv.2005.04.027

    Article  CAS  Google Scholar 

  • Hamidi M, Kavianpour MR, Shao Y (2013) Synoptic analysis of dust storms in the Middle East. Asia-Pacific J Atmos Sci 49(3):279–286. https://doi.org/10.1007/s13143-013-0027-9

    Article  Google Scholar 

  • Holtslag AAM, de Bruijn EIF, Pan HL (1990) A high resolution air mass transformation model for short-range weather forecasting. Mon Wea Rev 118:1561–1575. https://doi.org/10.1175/1520-0493(1990)118<1561:AHRAMT>2.0.CO;2

  • Janjic ZI (1994) The step-mountain eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes. Monthly Weather Review, vol. 122, no. 5, pp. 927–945, 1994

  • Karagulian F, Temimi M, Ghebreyesus D, Weston M, Kondapalli NK, Valappil VK, Aldababesh A, Lyapustin A, Chaouch N, Al Hammadi F, Al Abdooli A (2019) Analysis of a severe dust storm and its impact on air quality conditions using WRF-CHEM modeling, satellite imagery, and ground observations. Air Qual Atmos Health. https://doi.org/10.1007/s11869-019-00674-z

    Article  Google Scholar 

  • Kiehl JT, Hack JJ, Bonan GB, Boville BA, Briegleb BP, Williamson DL, Rasch PJ (1996) Description of the NCAR community climate model (CCM3). Technical Report NCAR/TN-420+STR

  • Marticorena B, Bergametti G (1995) Modelling the atmospheric dust cycle: 1. Design of a soil derived dust production scheme. J Geophys Res 100:16,415–16,430

  • Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102:16,663–16,682

  • Middleton NJ (2017) Desert dust hazards: A global review. Aeolian Res 24:53–63

    Article  Google Scholar 

  • Morman SA, Plumlee GS (2013) The role of airborne mineral dusts in human disease. Aeolian Res 9:203–212

    Article  Google Scholar 

  • Nouri H, Faramarzi M, Sadeghi SH, Nasseri S (2019) Effects of regional vegetation cover degradation and climate change on dusty weather types. Environ Earth Sci 78:723. https://doi.org/10.1007/s12665-019-8763-5

    Article  Google Scholar 

  • Pitman AJ, de Noblet-Ducoudré N, Cruz FT, Davin EL, Bonan GB, Brovkin V, Claussen M, Delire C, Ganzeveld L, Gayler V (2009) Uncertainties in climate responses to past land cover change: first results from the LUCID intercomparison study. Geophys Res Lett 36:171–183

    Article  Google Scholar 

  • Sabbah I, Léon JF, Sorribas M, Guinot B, Córdoba-Jabonero C, de Souza A, Al Sharifi F (2018) Dust and dust storms over Kuwait: ground-based and satellite observations. J Atmos Solar Terr Phys 179:105–113

    Article  Google Scholar 

  • Saeed TM, Al-Dashti H (2011) Optical and physical characterization of “Iraqi freedom” dust storms, a case study. Theor Appl Climatol 104:123–137

    Article  Google Scholar 

  • Shao Y (2004) Simplification of a dust emission scheme and comparison with data. J Geophys Res. https://doi.org/10.1029/2003JD004372

    Article  Google Scholar 

  • Solmon F, Nair VS, Mallet M (2015) Increasing Arabian dust activity and the Indian summer monsoon. Atmos Chem Phys 15(14):8051

    Article  CAS  Google Scholar 

  • Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; (Eds.) Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; ISBN 978–1–107–05799–9

  • Tewari MF, Chen W, Wang J, Dudhia MA, LeMone K, Mitchell ME, Gayno G, Wegiel J, Cuenca RH (2004). Implementation and verification of the unified NOAH land surface model in the WRF model. Paper Presented at the 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, Seattle, 11.15

  • Veselovskii I, Goloub P, Podvin T, Tanre D, da Silva A, Colarco P, Castellanos P, Korenskiy M, Hu Q, Whiteman DN, Pérez-Ramírez D, Augustin P, Fourmentin M, Kolgotin A (2018) Characterization of smoke and dust episode over West Africa: comparison of MERRA-2 modeling with multiwavelength Mie-Raman lidar observations. Atmos Meas Tech 11:949–969. https://doi.org/10.5194/amt-11-949-2018

    Article  CAS  Google Scholar 

  • Yassin M, Almutairi S, Al-Hemoud A (2018) Dust storms backward Trajectories’ and source identification over Kuwait. Atmos Res 212:158–171. https://doi.org/10.1016/j.atmosres.2018.05.020

    Article  Google Scholar 

  • Zakey AS, Solmon F, Giorgi F (2006) Implementation and testing of a desert dust module in a regional climate model. Atmos Chem Phys 6:4687–4704. https://doi.org/10.5194/acp-6-4687

    Article  CAS  Google Scholar 

  • Zhang C, Wang Y, Hamilton K (2011) Improved representation of boundary layer clouds over the southeast pacific in ARW-WRF using a modified tiedtke cumulus parameterization scheme. Mon Weather Rev 139(11):3489–3513

    Article  Google Scholar 

  • Zhang X, Zhao L, Tong D, Wu G, Dan M, Teng BA (2016) systematic review of global desert dust and associated human health effects. Atmosphere 7:158

    Article  Google Scholar 

  • Zhao M, Pitman AJ (2002) The regional scale impact of land cover change simulated with a climate model. Int J Climatol 22:271–290

    Article  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate the editorial team and reviewers for their careful reading of the manuscript and their many insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeinab Salah.

Additional information

Editorial responsibility: M.F. Yassin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salah, Z., Dashti, H., Zakey, A. et al. How land use change can improve air quality status over Kuwait. Int. J. Environ. Sci. Technol. 19, 747–762 (2022). https://doi.org/10.1007/s13762-021-03171-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-021-03171-y

Keywords

Navigation