Skip to main content
Log in

Investigation of the mechanisms of Escherichia coli cells sterilization by the application of an electric field

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The inactivation of microorganisms by an electric field was the purpose of this study. It was found that the application of an electric field had a lethal effect on Escherichia coli cells suspended in brain heart infusion broth. Experimental results indicated that the survival rate of E. coli decreased when an electric field with an intensity of 3A was applied during a time equal to 30 min. Mechanisms involved in the sterilization process were discussed. The concentration of proteins and N-acetylglucosamine (NAG) liberated by the cells during the experiment was recorded. The results indicated that the concentration of liberated proteins was 2.21 µg/ml after 5 min, and this concentration increased twofold after 45 min (4.10 µg/ml). The initial concentration of NAG was 0.084 µg/ml. It increased to 0.1 µg/ml after 5 min, to 0.2 µg/ml after 10 min and to 1.3 µg/ml after 30 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Boman HG, Marsh J, Goode JA (1994) Antimicrobial peptides. Ciba Foundation Symposium 186 (eds). Wiley, Chichester

  • Boudjema N (2014) Traitement des eaux usées de l’Oued El Harrach par electrocoagulation: effects et Mécanismes du Champ Electrique sur les Micro-organismes. These de doctorat biologie, USTHB

  • Boudjema N, Drouiche N, Abdi N, Grib H, Lounici H, Pauss A, Mameri N (2014) Treatment of Oued El Harrach river water by electrocoagulation noting the effect of the electric field on microorganisms. J Taiwan Inst Chem Eng 45(4):1564–1570

    Article  CAS  Google Scholar 

  • Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria. Nat Rev 3:238–250

    CAS  Google Scholar 

  • Carson CF, Mee BJ, Riley TV (2002) Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined par time-kill, lysis, leakage and salt tolerance assays and electron microscopy. Antimicrob Agents Chemother 46:1914–1920

    Article  CAS  Google Scholar 

  • Carson CF, Hammer KA, Riley TV (2006) Melaleuca alternifolia (tea tree) oil: a review of antimicrobial and other medicinal properties. Clin Microbiol Rev 19:50–62

    Article  CAS  Google Scholar 

  • Chen G (2004) Electrochemical technologies in wastewater treatment. Sep Purif Technol 38:11–41

    Article  CAS  Google Scholar 

  • Cox SD, Mann CM, Markham JL, Bell HC, Gustafson JE, Warmington JR, Wyllie SG (2000) The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree oil). J Appl Microbiol 88:170–175

    Article  CAS  Google Scholar 

  • Gonzalez ME, Barrett DM (2010) Thermal, high pressure, and electric field processing effects on plant cell membrane integrity and relevance to fruit and vegetable quality. J Food Sci 75(7):121–130

    Article  CAS  Google Scholar 

  • Gornall AC, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Bio Chem 177:751–756

    CAS  Google Scholar 

  • Gowrishankar TR, Weaver JC (2003) An approach to electrical modeling of single and multiple cells. Biophys PNAS 100(6):3203–3208

    Article  CAS  Google Scholar 

  • Guinoiseau E (2010) Molécules antibactériennes issues d’huiles essentielles: séparation, identification et mode d’action. Thèse de docteur de l’université de corse, p 148

  • Hamilton WA, Sale AJH (1967) Effects of high electric fields on microorganisms: II. Mechanism of action of the lethal effect. Biochim Biophys Acta (BBA) Gen Subj 148:789–800

    Article  CAS  Google Scholar 

  • Hammer KA, Carson CF, Riley TV (1996) Susceptibility of transient and commensal skin flora to the essential oil of Melaleuca alternifolia(tea tree oil). Am J Infect Control 24:186–189

    Article  CAS  Google Scholar 

  • Hancock REW (2001) Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect Dis 1:156–164

    Article  CAS  Google Scholar 

  • Hancock RE, Chapple DS (1999) Peptide antibiotics. Antimicrob Agents Chemother 43:1317–1323

    Article  CAS  Google Scholar 

  • Jenssen H, Hamill P, Hancock RE (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19:491–511

    Article  CAS  Google Scholar 

  • Leontiadou H, Mark AE, Marrink SJ (2006) Antimicrobial peptides in action. J Am Chem Soc 128:12156–12161

    Article  CAS  Google Scholar 

  • Li M, Qu J-h, Peng Y-z (2004) Sterilization Escherichia coli cells by application electric pulsed magnetic field. J Environ Sci 16(2):348–352

    CAS  Google Scholar 

  • Nizet V (2006) Antimicrobial peptide resistance mechanisms of human bacterial pathogens. Curr Issues Mol Biol 8:11–26

    CAS  Google Scholar 

  • Pillet F, Formosa-Dague C, Baaziz H, Dague E, Rols MP (2016) Cell wall as a target for bacteria inactivation by pulsed electric fields. Scientific Reports 6, Article number: 19778

  • Prescott LM, Harley JP, Klein DA (2003) Microbiologie. de Boeck edn, Bruxelles

    Google Scholar 

  • Reichling J, Weseler A, Landvatter U, Saller R (2002) Bioactive essential oils used in phytomedicine as antiinfective agents: Australian tea tree oil and manuka oil. Act Pythoter 1:26–32

    Google Scholar 

  • Reissig JL, Strominger JL, Leloir LF (1955) A modified colorimetric method for estimation of N-acetylmino sugars. J Biol Chem 217:959–962

    CAS  Google Scholar 

  • Sengupta D, Leontiadou H, Mark AE, Marrink SJ (2008) Toroidal pores formed by antimicrobial peptides show significant disorder. Biochem Biophys Acta 1778:2308–2317

    Article  CAS  Google Scholar 

  • Sikkema J, de Bont JAM, Poolman B (1994) Interactions of cyclic hydrocarbons with biological membranes. J Biol Chem 269:8022–8028

    CAS  Google Scholar 

  • Tessaro LWE, Murugan NJ, Persinger MA (2015) Bacterial growth rates are influenced by cellular characteristics of individual species when immersed in electromagnetic fields. Microbiol Res 172:26–33

    Article  CAS  Google Scholar 

  • Tossi A, Scocchi M, Zanetti M, Gennaro R, Storici P, Romeo D (1997) An approach combining rapid cDNA amplification and chemical synthesis for the identification of novel, cathelicidin-derived, antimicrobial peptides. Methods Mol Biol 78:133–150

    CAS  Google Scholar 

  • Vepsalainen M, Pulliainen M, Sillanpa M (2012) A Effect of electrochemical cell structure on natural organic matter (NOM) removal from surface water through electrocoagulation (EC). Sep Purif Technol 99:20–27

    Article  CAS  Google Scholar 

  • Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55:27–55

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This study was financially supported by the National Research Fund from DGRSDT/MESRS (Algeria).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Drouiche.

Additional information

Editorial responsibility: M. Abbaspour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boudjema, N., Kherat, M., Drouiche, N. et al. Investigation of the mechanisms of Escherichia coli cells sterilization by the application of an electric field. Int. J. Environ. Sci. Technol. 16, 6259–6266 (2019). https://doi.org/10.1007/s13762-019-02218-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-019-02218-5

Keywords

Navigation