Skip to main content

Advertisement

Log in

Application of Raman spectroscopy in chemical investigation of impregnated activated carbon spent in hydrogen sulfide removal process

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

We present an application of Raman spectroscopy for understanding the chemisorption catalytic processes occurred in impregnated activated carbon used in hydrogen sulfide (H2S) adsorption from biogas. Downstream of an H2S adsorption capacity study, conducted employing commercial carbon at different operating conditions as sorbent in a fixed bed flow reactor, spent carbon samples who returned suitable H2S removal performances were studied by means of Raman spectroscopy. Raman analysis showed that among all the H2S metal impregnates, copper was the chemical responsible for H2S adsorption, since observed Raman spectra exhibited a perfect overlapping with copper sulfide (CuS) signature. A further confirmation was given by a thermal decomposition test conducted through the Raman optical apparatus over an H2S-exposed carbon sample, by estimating anti-Stokes and Stokes Raman processes relative efficiency. Raman results turned out to be consistent with thermogravimetry tests results executed over the same spent carbon samples. The experiment witnesses the capability of Raman spectroscopy to determinate the chemical nature of compounds resulting from H2S adsorption, overcoming the lack in chemical information encountered by elemental techniques such as energy-dispersive X-ray. We thus propose Raman spectroscopy as a way to integrate traditional chemical investigation procedures.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahlberg-Eliasson K, Nadeau E, Leven L, Schnurer A (2017) Production efficiency of Swedish farm-scale biogas plants. Biomass Bioenergy 97:27–37

    Article  CAS  Google Scholar 

  • Baciocchi R, Costa G, Lategano E, Marini C, Polettini A, Pomi R, Postorino P, Rocca S (2010) Accelerated carbonation of different size fractions of bottom ash from RDF incineration. Waste Manag 30(7):1310–1317

    Article  CAS  Google Scholar 

  • Bagreev A, Bandosz T (2002) A role of sodium hydroxide in the process of hydrogen sulfide adsorption/oxidation on caustic impregnated activated carbons. Ind Eng Chem Res 41(4):672–679

    Article  CAS  Google Scholar 

  • Bagreev A, Habibur R, Bandosz T (2001) Thermal regeneration of a spent activated carbon previously used as hydrogen sulfide adsorbent. Carbon 39(9):1319–1326

    Article  CAS  Google Scholar 

  • Bandosz T (1999) Effect of pore structure and surface chemistry of virgin activated carbons on removal of hydrogen sulfide. Carbon 37(3):483–491

    Article  CAS  Google Scholar 

  • Blachnik R, Müller A (2000) The formation of Cu2S from the elements: i. Copper used in form of powders. Thermochim Acta 361(1):31–52

    Article  CAS  Google Scholar 

  • Chiang HL, Huang CP, Chiang PC, You JH (1999) Effect of metal additives on the physicochemical characteristics of activated carbon exemplified by benzene and acetic acid adsorption. Carbon 37(12):1919–1928

    Article  CAS  Google Scholar 

  • Ciccoli R, Cigolotti V, Lo Presti R, Massi E, McPhail SJ, Monteleone G, Moreno A, Naticchioni V, Paoletti C, Simonetti E, Zaza F (2010) Molten carbonate fuel cells fed with biogas: combating H2S. Waste Manag 30(6):1018–1024

    Article  CAS  Google Scholar 

  • Cigolotti V, McPhail SJ, Moreno A, Yoon SP, Han JH, Nam SW, Lim T (2011) MCFC fed with biogas: experimental investigation of sulphur poisoning using impedance spectroscopy. Int J Hydrog Energy 36(16):10311–10318

    Article  CAS  Google Scholar 

  • Comino E, Rosso M, Riggio V (2009) Development of a pilot scale anaerobic digester for biogas production from cow manure and whey mix. Biores Technol 100(21):5072–5078

    Article  CAS  Google Scholar 

  • de Santoli L, Mancini F, Nastasi B, Piergrossi V (2015) Building integrated bioenergy production (BIBP): economic sustainability analysis of Bari airport CHP (combined heat and power) upgrade fueled with bioenergy from short chain. Renew Energy 81:499–508

    Article  Google Scholar 

  • Escribano R, Sloan JJ, Siddique N, Sze N, Dudev T (2001) Raman spectroscopy of carbon-containing particles. Vib Spectrosc 26(2):179–186

    Article  CAS  Google Scholar 

  • Feng W, Kwon S, Borguet E, Vidic R (2005) Adsorption of hydrogen sulfide onto activated carbon fibers: effect of pore structure and surface chemistry. Environ Sci Technol 39(24):9744–9749

    Article  CAS  Google Scholar 

  • Feng R, Li J, Dong T, Li X (2016) Performance of a novel household solar heating thermostatic biogas system. Appl Therm Eng 96:519–526

    Article  Google Scholar 

  • Fontana A, Patrone V, Puglisi E, Morelli L, Bassi D, Garuti M, Rossi L, Cappa F (2016) Effects of geographic area, feedstock, temperature, and operating time on microbial communities of six full-scale biogas plants. Biores Technol 218:980–990

    Article  CAS  Google Scholar 

  • Glebov A, Mokhun O, Rapaport A, Vergnole S, Smirnov V, Glebov LB (2012) Volume Bragg gratings as ultra-narrow and multiband optical filters. In: SPIE photonics Europe. International society for optics and photonics, p 84280C

  • Hauge H, Verheijen M, Conesa-Boj S, Etzelstorfer T, Watzinger M, Kriegner D, Zardo I, Fasolato C, Capitani F, Postorino P, Kölling S, Li A, Assali S, Stangl J, Bakkers E (2015) Hexagonal silicon realized. Nano Lett 15(9):5855–5860

    Article  CAS  Google Scholar 

  • Hernández S, Solarino L, Orsello G, Russo N, Fino D, Saracco G, Specchia V (2008) Desulfurization processes for fuel cells systems. Int J Hydrog Energy 33(12):3209–3214

    Article  Google Scholar 

  • Minale M, Worku T (2014) Anaerobic co-digestion of sanitary wastewater and kitchen solid waste for biogas and fertilizer production under ambient temperature: waste generated from condominium house. Int J Environ Sci Technol 11(2):509–516

    Article  CAS  Google Scholar 

  • Monder D, Vorontsov V, Luo J, Chuang K, Nandakumar K (2012) An investigation of fuel composition and flow-rate effects in a H2S fuelled sofc: experiments and thermodynamic analysis. Can J Chem Eng 90(4):1033–1042

    Article  CAS  Google Scholar 

  • Monteleone G, De Francesco M, Galli S, Marchetti M, Naticchioni V (2011) Deep H2S removal from biogas for molten carbonate fuel cell (MCFC) systems. Chem Eng J 173(2):407–414

    Article  CAS  Google Scholar 

  • Monteleone G, Carewska M, Ciccoli R, De Francesco M, Galli S, Gislon P, Granati M, Graziadio M (2014) Abbattimento dell’H2S e upgrading di un biogas proveniente da digestione anaerobica degli scarti di una mensa aziendale. Report RdS/PAR2013/248

  • Mustafi N, Raine R, Bryony J (2010) Characterization of exhaust particulates from a dual fuel engine by TGA, XPS, and Raman techniques. Aerosol Sci Technol 44(11):954–963

    Article  CAS  Google Scholar 

  • Nguyen-Thanh D, Bandosz T (2005) Activated carbons with metal containing bentonite binders as adsorbents of hydrogen sulfide. Carbon 43(2):359–367

    Article  CAS  Google Scholar 

  • Paolone A, Sacchetti A, Corridoni T, Postorino P, Cantelli R, Rousse G, Masquelier C (2004) MicroRaman spectroscopy on LiMn2O4: warnings on laser-induced thermal decomposition. Solid State Ion 170(1):135–138

    Article  CAS  Google Scholar 

  • Paritosh K, Mathur S, Pareek N, Vivekanand V (2017) Feasibility study of waste (d) potential: co-digestion of organic wastes, synergistic effect and kinetics of biogas production. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-017-1453-5

    Article  Google Scholar 

  • Rasmussen J, Hagen A (2010) The effect of H2S on the performance of SOFCs using methane containing fuel. Fuel Cells 10(6):1135–1142

    Article  CAS  Google Scholar 

  • RRUFFTM database (n.d.) http://rruff.info/. Accessed 06 Dec 2016

  • Song C (2003) An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catal Today 86(1):211–263

    Article  CAS  Google Scholar 

  • Tsai J, Jeng F, Chiang H (2001) Removal of H2S from exhaust gas by use of alkaline activated carbon. Adsorption 7(4):357–366

    Article  CAS  Google Scholar 

  • Tufaner F, Avşar Y (2016) Effects of co-substrate on biogas production from cattle manure: a review. Int J Environ Sci Technol 13(9):2303–2312

    Article  CAS  Google Scholar 

  • Usack J, Wiratni W, Angenent L (2014) Improved design of anaerobic digesters for household biogas production in indonesia: one cow, one digester, and one hour of cooking per day. Sci World J 2014:318054. https://doi.org/10.1155/2014/318054

    Article  CAS  Google Scholar 

  • Xiao Y, Wang S, Wu D, Yuan Q (2008) Experimental and simulation study of hydrogen sulfide adsorption on impregnated activated carbon under anaerobic conditions”. J Hazard Mater 153(3):1193–1200

    Article  CAS  Google Scholar 

  • Yu J, Yin F, Wang S, Chang L, Gupta S (2013) Sulfur removal property of activated-char-supported Fe–Mo sorbents for integrated cleaning of hot coal gases. Fuel 108:91–98

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank all who assisted in conducting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Piergrossi.

Additional information

Editorial responsibility: Ta Yeong Wu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 50 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piergrossi, V., Fasolato, C., Capitani, F. et al. Application of Raman spectroscopy in chemical investigation of impregnated activated carbon spent in hydrogen sulfide removal process. Int. J. Environ. Sci. Technol. 16, 1227–1238 (2019). https://doi.org/10.1007/s13762-018-1756-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-018-1756-1

Keywords

Navigation