Skip to main content
Log in

Optimization of sulfur adsorption over Ag-zeolite nanoadsorbent by experimental design method

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Environmental protection has mentioned the need to cut out all of fuels sulfur compounds. One of the most important processes that affect sulfur removal in atmospheric condition is the interaction of liquid fuels with solid sulfur removal adsorbents such as zeolites. To investigate the nano-AgX-zeolite efficiency for the sulfur adsorption process, a set of experimental tests was arranged and conducted by Box–Behnken design software, in an adsorption laboratory setup. The selected variables comprised metal percent, adsorption temperature and calcination temperature. The parameter levels were 0.5–10 %, 30–120 and 200–500 °C, respectively. The experiment results were used to find the statistical model. The results demonstrate that the sulfur concentration level is 48.36 ppm in the last product at 83 °C for adsorption temperature, 5.53 % for metal percent and 436 °C for calcination temperature in constant pH and constant process time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahmed MJK, Ahmaruzzaman M (2015) Adsorptive desulfurization of feed diesel using chemically impregnated coconut coir waste. IJEST 12(9):2847–2856

    CAS  Google Scholar 

  • Bagheri A, Taghizadeh M, Behbahani M, Asgharinezhad A, Salarian M, Dehghani A, Ebrahimzadeh H, Amini M (2012) Synthesis and characterization of magnetic metal-organic framework (MOF) as a novel sorbent, and its optimization by experimental design methodology for determination of palladium in environmental samples. Talanta 99:132–139

    Article  CAS  Google Scholar 

  • Balkus JK, Ly KT (1991) The preparation of an X type zeolite. J Chem Educ 68(10):875–877

    Article  CAS  Google Scholar 

  • Cheng Q, Yang W, Li Z, Zhu Q, Chu T, He C, Fang C (2015) Adsorption of gaseous radioactive iodine by Ag/13X zeolite at high temperatures. J Radioanal Nucl Chem 303:1883–1889

    CAS  Google Scholar 

  • Collins FM, Lucy AR, Sharp C (1997) Desulphurisation of oils via hydrogen peroxide and heteropolyanion catalysis. J Mol Catal A Chem 117:397–403

    Article  CAS  Google Scholar 

  • Dutta S (2013) Optimization of Reactive Black 5 removal by adsorption process using Box–Behnken design. Desalination Water Treat 51(40–42):7631–7638

    Article  CAS  Google Scholar 

  • Gong YJ, Dou T, Kang SJ, Li Q, Hu YF (2009) Deep desulfurization of gasoline using ion-exchange zeolites: Cu (I)-and Ag (I)-beta. Fuel Process Technol 90:122–129

    Article  CAS  Google Scholar 

  • Gutiérrez OY, Singh S, Schachtl E, Kim J, Kondratieva E, Hein J, Lercherv JA (2014) Effects of the support on the performance and promotion of (Ni)MoS2 catalysts for simultaneous hydrodenitrogenation and hydrodesulfurization. Catalysis 4:1487–1499

    Google Scholar 

  • Hernandez-Maldonado AJ, Yang RTJ (2004) Desulfurization of diesel fuels by adsorption via π-complexation with vapor-phase exchanged Cu (I)-Y zeolites. Am Chem Soc 126:992–993

    Article  CAS  Google Scholar 

  • Hernández-Maldonado AJ, Yang RT (2003) Desulfurization of liquid fuels by adsorption via π-complexation with cu(i)-y and ag-y zeolites. Ind Eng Chem Res 42:123–129

    Article  Google Scholar 

  • Houthoofd K, Grobet PJ, Jacobs PA (2008) Study of the adsorption of organic molecules on transition metal exchanged zeolites via solid state NMR. Part 2: adsorption of organic molecules on zeolite NaX, CaX, and CaCoX. J Phys Chem B 112:9630–9640

    Article  CAS  Google Scholar 

  • Irvine RL (1998) Process for desulfurizing gasoline and hydrocarbon feedstocks. U.S. Patent 5,730,860

  • Kostinko JA (1982) Factors influencing the synthesis of zeolites A, X, and Y. Intrazeolite Chem 1:1–17

    Google Scholar 

  • Kumar DR, Srivastava VC (2012) Studies on adsorptive desulfurization by activated carbon. Clean Soil Air Water 40:545–550

    Article  Google Scholar 

  • Kumar A, Prasad B, Mishra IM (2008) Optimization of process parameters for acrylonitrile removal by a low-cost adsorbent using Box–Behnken design. J Hazard Mater 150:174–182

    Article  CAS  Google Scholar 

  • Laborde-Boutet C, Joly G, Magnoux P, Nicolaos A, Thomas M (2006) Selectivity of thiophene/toluene competitive adsorptions onto zeolites. Influence of the alkali metal cation in FAU (Y). Ind Eng Chem Res 45:8111–8116

    Article  CAS  Google Scholar 

  • Ma X, Velu S, Kim JH, Song C (2002) Deep desulfurization of gasoline by selective adsorption over solid adsorbents and impact of analytical methods on ppm-level sulfur quantification for fuel cell applications. Catal Today 77:107–116

    Article  CAS  Google Scholar 

  • Ma X, Sun L, Song C (2005) A new approach to deep desulfurization of gasoline, diesel fuel and jet fuel by selective adsorption for ultra-clean fuels and for fuel cell applications. Appl Catal B 56:137–147

    Article  CAS  Google Scholar 

  • Moattar F, Hayeripour S (2004) Application of Chitin and Zeolite adsorbents for treatment of low level radioactive liquid wastes. IJEST 1:45–50

    Google Scholar 

  • Mourabet M, El Rhilassi A, El Boujaady H, Bennani-Ziatni M, El Hamri R, Taitai A (2012) Removal of fluoride from aqueous solution by adsorption on Apatitic tricalcium phosphate using Box–Behnken design and desirability function. Appl Surf Sci 258:4402–4410

    Article  CAS  Google Scholar 

  • Ogunlaja A, Coombes M, Torto N, Tshentu Z (2014) The adsorptive extraction of oxidized sulfur-containing compounds from fuels by using molecularly imprinted chitosan materials. React Funct Polym 81:61–76

    Article  CAS  Google Scholar 

  • Qin Y, Mo Zh, Yu W, Dong Sh, Duan L, Gao X, Song L (2014) Adsorption behaviors of thiophene, benzene, and cyclohexene on FAUzeolites: comparison of CeY obtained by liquid-, and solid-state ion exchangeYucai. Appl Surf Sci 292:5–15

    Article  CAS  Google Scholar 

  • Salmasi M, Fatemi S, Rad MD, Jadidi F (2013) Study of carbon dioxide and methane equilibrium adsorption on silicoaluminophosphate-34 zeotype and T-type zeolite as adsorbent. IJEST 10:1067–1074

    CAS  Google Scholar 

  • Shams A, Dehkordi AM, Goodarznia I (2008) Desulfurization of liquid-phase butane by zeolite molecular sieve 13x in a fixed bed: modeling, simulation, and comparison with commercial-scale plant data. Energy Fuels 22:570–575

    Article  CAS  Google Scholar 

  • Shi Y, Zhang W, Zhang H, Tian F, Jia C, Chen Y (2013) Effect of cyclohexene on thiophene adsorption over NaY and LaNaY zeolites. Fuel Process Technol 110:24–32

    Article  CAS  Google Scholar 

  • Song H, Cui XH, Song HL, Jao HJ, Li F (2014) Characteristic and adsorption desulfurization performance of Ag–Ce bimetal ion-exchanged Y zeolite. Ind Eng Chem Res 53:14552–14557

    Article  CAS  Google Scholar 

  • Song H, Jiang B, Song HL, Jin Z, Sun X (2015) Preparation of AgY zeolite and study on its adsorption equilibrium and kinetics. Res Chem Intermed 41(6):3837–3854

    Article  CAS  Google Scholar 

  • Sumathi S, Bhatia S, Lee KT, Mohamed AR (2009) Optimization of microporous palm shell activated carbon production for flue gas desulphurization: experimental and statistical studies. Bioresour Technol 100:1614–1621

    Article  CAS  Google Scholar 

  • Tian F, Shen Q, Fu Z, Wu Y, Jia C (2014) Enhanced adsorption desulfurization performance over hierarchically structured zeolite Y. Fuel Process Technol 128:176–182

    Article  CAS  Google Scholar 

  • Wajima T, Ikegami Y (2009) Synthesis of crystalline zeolite-13X from waste porcelain using alkali fusion. Ceram Int 35:2983–2986

    Article  CAS  Google Scholar 

  • Yang RT (2003) Adsorbents: fundamentals and applications. Wiley, New York

    Book  Google Scholar 

  • Yang RT, Hernandez-Maldonado AJ (2003) Desulfurization of transportation fuels with zeolites under ambient conditions. Science 301:79–81

    Article  CAS  Google Scholar 

  • Yang RT, Takahashi A, Yang FH, Hernández-Maldonado A (2002) U.S. and foreign patent applications filed

  • Yi D, Huang H, Meng X, Shi L (2013) Desulfurization of liquid hydrocarbon streams via adsorption reactions by silver-modified bentonite. Ind Eng Chem Res 52:6112–6118

    Article  CAS  Google Scholar 

  • Yong Y, Liu X, Xu B (2014) Recent advances in molecular imprinting technology for the deep desulfurization of fuel oils. New Carbon Mater 29(1):1–14

    Article  Google Scholar 

  • Zepeda TA, Infantes-Molina A, Díaz de León JN, Fuentes S, Alonso-Núñez G, Torres-Otañez G, Pawelec B (2014) Hydrodesulfurization enhancement of heavy and light S-hydrocarbons on NiMo/HMS catalysts modified with Al and P. Appl Catal A Gen 484:108–121

    Article  CAS  Google Scholar 

  • Zhang X, Tang D, Zhang M, Yang R (2013) Synthesis of NaX zeolite: influence of crystallization time, temperature and batch molar ratio SiO2/Al2O3 on the particulate properties of zeolite crystals. Powder Technol 235:322–328

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Chemistry Departments, Amirkabir University of Technology, Tehran, Iran, and Refining Technology Development Division, Research Institute of Petroleum Industry, Tehran, Iran, for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Abdouss.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhtiari, G., Abdouss, M., Bazmi, M. et al. Optimization of sulfur adsorption over Ag-zeolite nanoadsorbent by experimental design method. Int. J. Environ. Sci. Technol. 13, 803–812 (2016). https://doi.org/10.1007/s13762-015-0910-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-015-0910-2

Keywords

Navigation