Skip to main content
Log in

Adsorption of hexavalent chromium ions from aqueous solution by graphene nanosheets: kinetic and thermodynamic studies

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

In the present study, a batch system was used to investigate the adsorption of chromium (VI) ions from an aqueous solution by graphene nanosheets. Graphene is decorated with functional groups containing oxygen such as epoxy and hydroxyl on the basal plane. The large negative charge density available on graphene causes effective adsorption of chromium (VI) ions from aqueous solutions. The adsorption capacity and rate of chromium (VI) ions at different temperatures, adsorbent dosages, initial concentrations, and contact times were evaluated. The kinetic study illustrated that the adsorption of chromium (VI) ions onto graphene obeys the pseudo-second-order model with activation energy of 21.91 kJ mol−1. The chromium (VI) ions adsorption was well explained using Dubinin–Radushkevich isotherm model. The values of standard enthalpy, entropy, and Gibbs free energy changes at 25 °C were calculated as 686.07 kJ mol−1, 2.38 kJ mol−1K−1, and −22.43 kJ mol−1, respectively. In this work, graphene was prepared via a green method. Transmission electron microscopy, Fourier transform-infrared spectroscopy, energy-dispersive X-ray analysis, powder X-ray diffraction, Boehm’s titration, and N2 adsorption–desorption techniques revealed a high-quality few-layer nanosheets of graphene with surface area and inter-planar spacing of 594.7 m2 g−1 and 3.6 Å, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Afkhami A, Conway BE (2002) Investigation of removal of Cr(VI), Mo(VI), W(VI), V(IV), and V(V) oxy-ions from industrial waste-waters by adsorption and electrosorption at high-area carbon cloth. J Colloid Interface Sci 251:248–255

    Article  CAS  Google Scholar 

  • Badmus M, Audu T, Anyata B (2007) Removal of heavy metal from industrial wastewater using hydrogen peroxide. Afr J Biotechnol 6:238–242

    CAS  Google Scholar 

  • Bhatnagar A, Kumar E, Sillanpää M (2010) Nitrate removal from water by nano-alumina: characterization and sorption studies. Chem Eng J 163:317–323

    Article  CAS  Google Scholar 

  • Cancer IAfRo, Humans IWGotEoCRt (2001) IARC monographs on the evaluation of carcinogenic risks to humans, vol 78. International Agency for Research on Cancer, Lyon

    Google Scholar 

  • Chakir A, Bessiere J, Kacemi KE, Marouf B (2002) A comparative study of the removal of trivalent chromium from aqueous solutions by bentonite and expanded perlite. J Hazard Mater 95:29–46

    Article  CAS  Google Scholar 

  • Chakrabarti A, Lu J, Skrabutenas JC, Xu T, Xiao Z, Maguire JA, Hosmane NS (2011) Conversion of carbon dioxide to few-layer graphene. J Mater Chem 21:9491–9493

    Article  CAS  Google Scholar 

  • Deng S, Bai R (2004) Removal of trivalent and hexavalent chromium with aminated polyacrylonitrile fibers: performance and mechanisms. Water Res 38:2424–2432

    Article  CAS  Google Scholar 

  • Dias JM, Alvim-Ferraz M, Almeida MF, Rivera-Utrilla J, Sánchez-Polo M (2007) Waste materials for activated carbon preparation and its use in aqueous-phase treatment: a review. J Environ Manag 85:833–846

    Article  CAS  Google Scholar 

  • Dubinin MM, Zaverina E, Radushkevich L (1947) Sorption and structure of active carbons. I. Adsorption of organic vapors. Zh Fiz Khim 21:1351–1362

    CAS  Google Scholar 

  • Emsley J (2011) Nature’s building blocks: an AZ guide to the elements. Oxford University Press, Oxford

    Google Scholar 

  • Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92:407–418

    Article  CAS  Google Scholar 

  • Gao H, Liu Y, Zeng G, Xu W, Li T, Xia W (2008) Characterization of Cr(VI) removal from aqueous solutions by a surplus agricultural waste—rice straw. J Hazard Mater 150:446–452

    Article  CAS  Google Scholar 

  • Gardea-Torresdey J et al (2000) Characterization of Cr(VI) binding and reduction to Cr(III) by the agricultural byproducts of Avena monida (Oat) biomass. J Hazard Mater 80:175–188

    Article  CAS  Google Scholar 

  • Ghosh PK (2009) Hexavalent chromium [Cr(VI)] removal by acid modified waste activated carbons. J Hazard Mater 171:116–122

    Article  CAS  Google Scholar 

  • Goertzen SL, Thériault KD, Oickle AM, Tarasuk AC, Andreas HA (2010) Standardization of the Boehm titration. Part I. CO2 expulsion and endpoint determination. Carbon 48:1252–1261

    Article  CAS  Google Scholar 

  • Guo P, Song H, Chen X (2009) Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries. Electrochem Commun 11:1320–1324

    Article  CAS  Google Scholar 

  • Guo Y, Guo S, Ren J, Zhai Y, Dong S, Wang E (2010) Cyclodextrin functionalized graphene nanosheets with high supramolecular recognition capability: synthesis and host–guest inclusion for enhanced electrochemical performance. ACS Nano 4:4001–4010

    Article  CAS  Google Scholar 

  • Gupta S, Babu B (2006) Adsorption of chromium(VI) by a low-cost adsorbent prepared from tamarind seeds. In: Proceedings of international symposium and 59th annual session of IIChE in association with international partners (CHEMCON-2006), GNFC Complex, Bharuch. Citeseer

  • Gupta V, Nayak A (2012) Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles. Chem Eng J 180:81–90

    Article  CAS  Google Scholar 

  • Gupta VK, Jain R, Nayak A, Agarwal S, Shrivastava M (2011) Removal of the hazardous dye—tartrazine by photodegradation on titanium dioxide surface. Mater Sci Eng, C 31:1062–1067

    Article  CAS  Google Scholar 

  • Gupta VK, Ali I, Saleh TA, Nayak A, Agarwal S (2012a) Chemical treatment technologies for waste-water recycling—an overview. RSC Adv 2:6380–6388

    Article  CAS  Google Scholar 

  • Gupta VK, Jain R, Mittal A, Saleh TA, Nayak A, Agarwal S, Sikarwar S (2012b) Photo-catalytic degradation of toxic dye amaranth on TiO2/UV in aqueous suspensions. Mater Sci Eng, C 32:12–17

    Article  CAS  Google Scholar 

  • Ho Y, McKay G, Wase D, Forster C (2000) Study of the sorption of divalent metal ions on to peat. Adsorpt Sci Technol 18:639–650

    Article  CAS  Google Scholar 

  • Hota G, Kumar BR, Ng W, Ramakrishna S (2008) Fabrication and characterization of a boehmite nanoparticle impregnated electrospun fiber membrane for removal of metal ions. J Mater Sci 43:212–217

    Article  CAS  Google Scholar 

  • Jankiewicz B, Ptaszynski B (2005) Determination of chromium in soil of£ ódŸ gardens. Pol J Environ Stud 14:869–875

    CAS  Google Scholar 

  • Juang R-S, Ju C-Y (1998) Kinetics of sorption of Cu(II)-ethylenediaminetetraacetic acid chelated anions on cross-linked, polyaminated chitosan beads. Ind Eng Chem Res 37:3463–3469

    Article  CAS  Google Scholar 

  • Karthikeyan T, Rajgopal S, Miranda LR (2005) Chromium(VI) adsorption from aqueous solution by Hevea brasiliensis sawdust activated carbon. J Hazard Mater 124:192–199

    Article  CAS  Google Scholar 

  • Karthikeyan S, Gupta V, Boopathy R, Titus A, Sekaran G (2012) A new approach for the degradation of high concentration of aromatic amine by heterocatalytic Fenton oxidation: kinetic and spectroscopic studies. J Mol Liq 173:153–163

    Article  CAS  Google Scholar 

  • Kotaś J, Stasicka Z (2000) Chromium occurrence in the environment and methods of its speciation. Environ Pollut 107:263–283

    Article  Google Scholar 

  • Largergren S (1898) Zur theorie der sogenannten adsorption geloster stoffe. Kungliga Svenska Vetenskapsakademiens. Handlingar 24:1–39

    Google Scholar 

  • Li Y, Gao B, Wu T, Sun D, Li X, Wang B, Lu F (2009) Hexavalent chromium removal from aqueous solution by adsorption on aluminum magnesium mixed hydroxide. Water Res 43:3067–3075

    Article  CAS  Google Scholar 

  • Lian P, Zhu X, Liang S, Li Z, Yang W, Wang H (2010) Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries. Electrochim Acta 55:3909–3914

    Article  CAS  Google Scholar 

  • Mittal A, Mittal J, Malviya A, Gupta V (2009) Adsorptive removal of hazardous anionic dye “Congo red” from wastewater using waste materials and recovery by desorption. J Colloid Interface Sci 340:16–26

    Article  CAS  Google Scholar 

  • Mittal A, Mittal J, Malviya A, Gupta V (2010a) Removal and recovery of Chrysoidine Y from aqueous solutions by waste materials. J Colloid Interface Sci 344:497–507

    Article  CAS  Google Scholar 

  • Mittal A, Mittal J, Malviya A, Kaur D, Gupta V (2010b) Decoloration treatment of a hazardous triarylmethane dye, Light Green SF (Yellowish) by waste material adsorbents. J Colloid Interface Sci 342:518–527

    Article  CAS  Google Scholar 

  • Moghaddam MB, Goharshadi EK, Entezari MH, Nancarrow P (2013) Preparation, characterization, and rheological properties of graphene–glycerol nanofluids. Chem Eng J 231:365–372

    Article  CAS  Google Scholar 

  • Nakano Y, Takeshita K, Tsutsumi T (2001) Adsorption mechanism of hexavalent chromium by redox within condensed-tannin gel. Water Res 35:496–500

    Article  CAS  Google Scholar 

  • Nameni M, Moghadam MA, Arami M (2008) Adsorption of hexavalent chromium from aqueous solutions by wheat bran. Int J Environ Sci Technol 5:161–168

    Article  CAS  Google Scholar 

  • Nollet H, Roels M, Lutgen P, Van der Meeren P, Verstraete W (2003) Removal of PCBs from wastewater using fly ash. Chemosphere 53:655–665

    Article  CAS  Google Scholar 

  • Özdemir E, Duranoğlu D, Beker Ü, Avcı AÖ (2011) Process optimization for Cr(VI) adsorption onto activated carbons by experimental design. Chem Eng J 172:207–218

    Article  Google Scholar 

  • Park S-J, Jang Y-S (2002) Pore structure and surface properties of chemically modified activated carbons for adsorption mechanism and rate of Cr(VI). J Colloid Interface Sci 249:458–463

    Article  CAS  Google Scholar 

  • Patterson JW (1985) Industrial wastewater treatment technology. Butterworth–Heinemann, Oxford

  • Pérez-Candela M, Martín-Martínez J, Torregrosa-Maciá R (1995) Chromium(VI) removal with activated carbons. Water Res 29:2174–2180

    Article  Google Scholar 

  • Ponder SM, Darab JG, Mallouk TE (2000) Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol 34:2564–2569

    Article  CAS  Google Scholar 

  • Saleh TA, Gupta VK (2012) Column with CNT/magnesium oxide composite for lead(II) removal from water. Environ Sci Pollut Res 19:1224–1228

    Article  CAS  Google Scholar 

  • Saltalı K, Sarı A, Aydın M (2007) Removal of ammonium ion from aqueous solution by natural Turkish (Yıldızeli) zeolite for environmental quality. J Hazard Mater 141:258–263

    Article  Google Scholar 

  • Sekar M, Sakthi V, Rengaraj S (2004) Kinetics and equilibrium adsorption study of lead(II) onto activated carbon prepared from coconut shell. J Colloid Interface Sci 279:307–313

    Article  CAS  Google Scholar 

  • Srivastava S, Tyagi R, Pant N (1989) Adsorption of heavy metal ions on carbonaceous material developed from the waste slurry generated in local fertilizer plants. Water Res 23:1161–1165

    Article  CAS  Google Scholar 

  • Stafiej A, Pyrzynska K (2007) Adsorption of heavy metal ions with carbon nanotubes. Sep Purif Technol 58:49–52

    Article  CAS  Google Scholar 

  • Su C-Y, Lu A-Y, Xu Y, Chen F-R, Khlobystov AN, Li L-J (2011) High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano 5:2332–2339

    Article  CAS  Google Scholar 

  • Upadhyay RK, Soin N, Roy SS (2014) Role of graphene/metal oxide composites as photocatalysts, adsorbents and disinfectants in water treatment: a review. RSC Adv 4:3823–3851

    Article  CAS  Google Scholar 

  • Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27:195–226

    Article  Google Scholar 

  • Wang G, Yang J, Park J, Gou X, Wang B, Liu H, Yao J (2008) Facile synthesis and characterization of graphene nanosheets. J Phys Chem C 112:8192–8195

    Article  CAS  Google Scholar 

  • Yao Y, Miao S, Yu S, Ping Ma L, Sun H, Wang S (2012) Fabrication of Fe3O4/SiO2 core/shell nanoparticles attached to graphene oxide and its use as an adsorbent. J Colloid Interface Sci 379:20–26

    Article  CAS  Google Scholar 

  • Yu LJ, Shukla SS, Dorris KL, Shukla A, Margrave J (2003) Adsorption of chromium from aqueous solutions by maple sawdust. J Hazard Mater 100:53–63

    Article  CAS  Google Scholar 

  • Zheng H, Liu D, Zheng Y, Liang S, Liu Z (2009) Sorption isotherm and kinetic modeling of aniline on Cr-bentonite. J Hazard Mater 167:141–147

    Article  CAS  Google Scholar 

  • Zhu J et al (2011) One-pot synthesis of magnetic graphene nanocomposites decorated with core@ double-shell nanoparticles for fast chromium removal. Environ Sci Technol 46:977–985

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from the Ferdowsi University of Mashhad (Grant No. 2/28073) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. K. Goharshadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goharshadi, E.K., Moghaddam, M.B. Adsorption of hexavalent chromium ions from aqueous solution by graphene nanosheets: kinetic and thermodynamic studies. Int. J. Environ. Sci. Technol. 12, 2153–2160 (2015). https://doi.org/10.1007/s13762-014-0748-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-014-0748-z

Keywords

Navigation