Skip to main content

Advertisement

Log in

Brain insulin resistance and the therapeutic value of insulin and insulin-sensitizing drugs in Alzheimer’s disease neuropathology

  • Review article
  • Published:
Acta Neurologica Belgica Aims and scope Submit manuscript

Abstract

The incidence of Alzheimer’s disease (AD) is significantly higher in people with diabetes. Insulin and insulin receptor (IR) signaling intermediates are expressed in the brain. Insulin exerts multiple function in the brain. The role of compromised IR signaling in AD pathogenesis and the therapeutic value of insulin attract broad attention. This review summarizes the collective insulin action in the brain related to key factors of AD pathogenesis, updates the key features of insulin resistance in the AD brain and assesses the therapeutic potential of insulin and insulin-sensitizing drugs. Insulin stimulates neural growth and survival, suppresses amyloidogenic processing of the amyloid precursor protein (AβPP) and inhibits the Tau phosphorylation kinase, glycogen synthase kinase 3β. Central nervous IR signaling regulates systemic metabolism and increases glucose availability to neurons. The expression of IR and its downstream effectors is reduced in AD brain tissues. Insulin and insulin-sensitizing drugs can improve cognitive function in AD patients and AD animal models. Systemic insulin delivery is less effective than intranasal insulin treatment. The penetrance of insulin-sensitizing drugs to the blood brain barrier is problematic and new brain-prone drugs need be developed. Insulin resistance manifested by the degradation and the altered phosphorylation of IR intermediates precedes overt AD syndrome. Type 3 diabetes as a pure form of brain insulin resistance without systemic insulin resistance is proposed as a causal factor in AD. Further research is needed for the identification of critical factors leading to impaired IR signaling and the development of new molecules to stimulate brain IR signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alzheimer’s A (2016) 2016 Alzheimer’s disease facts and figures. Alzheimers Dement 12:459–509

    Article  Google Scholar 

  2. Alzheimer’s Association. Alzheimer’s disease facts and figures. Alzheimers Dement 2021;17(3)

  3. Armstrong RA (2011) The pathogenesis of Alzheimer’s disease: a reevaluation of the “amyloid cascade hypothesis.” Int J Alzheimers Dis 2011:630865

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Neth BJ, Craft S (2017) Insulin resistance and Alzheimer’s disease: bioenergetic linkages. Front Aging Neurosci 9:345

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M, Chi H, Lin C, Li G, Holman K, Tsuda T, Mar L, Foncin JF, Bruni AC, Montesi MP, Sorbi S, Rainero I, Pinessi L, Nee L, Chumakov I, Pollen D, Brookes A, Sanseau P, Polinsky RJ, Wasco W, Da Silva HA, Haines JL, Perkicak-Vance MA, Tanzi RE, Roses AD, Fraser PE, Rommens JM, St George-Hyslop PH (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375:754–760

    Article  CAS  PubMed  Google Scholar 

  6. Citron M, Westaway D, Xia W, Carlson G, Diehl T, Levesque G, Johnson-Wood K, Lee M, Seubert P, Davis A, Kholodenko D, Motter R, Sherrington R, Perry B, Yao H, Strome R, Lieberburg I, Rommens J, Kim S, Schenk D, Fraser P (1997) St George Hyslop P, Selkoe DJ: Mutant presenilins of Alzheimer’s disease increase production of 42-residue amyloid beta-protein in both transfected cells and transgenic mice. Nat Med 3:67–72

    Article  CAS  PubMed  Google Scholar 

  7. Weller J, Budson A (2018) Current understanding of Alzheimer’s disease diagnosis and treatment. F1000 Res 7:F1000 Faculty Rev-1161. https://doi.org/10.12688/f1000research.14506.1

    Article  CAS  Google Scholar 

  8. Schioth HB, Craft S, Brooks SJ, Frey WH 2nd, Benedict C (2012) Brain insulin signaling and Alzheimer’s disease: current evidence and future directions. Mol Neurobiol 46:4–10

    Article  PubMed  Google Scholar 

  9. Kandimalla R, Thirumala V, Reddy PH (2017) Is Alzheimer’s disease a type 3 diabetes? a critical appraisal. Biochim Biophys Acta Mol Basis Dis 1863:1078–1089

    Article  CAS  PubMed  Google Scholar 

  10. Blazquez E, Velazquez E, Hurtado-Carneiro V, Ruiz-Albusac JM (2014) Insulin in the brain: its pathophysiological implications for States related with central insulin resistance, type 2 diabetes and Alzheimer’s disease. Front Endocrinol (Lausanne) 5:161

    Article  Google Scholar 

  11. Bedse G, Di Domenico F, Serviddio G, Cassano T (2015) Aberrant insulin signaling in Alzheimer’s disease: current knowledge. Front Neurosci 9:204

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hopkins DF, Williams G (1997) Insulin receptors are widely distributed in human brain and bind human and porcine insulin with equal affinity. Diabet Med 14:1044–1050

    Article  CAS  PubMed  Google Scholar 

  13. Benedict C, Hallschmid M, Schultes B, Born J, Kern W (2007) Intranasal insulin to improve memory function in humans. Neuroendocrinology 86:136–142

    Article  CAS  PubMed  Google Scholar 

  14. Craft S, Baker LD, Montine TJ, Minoshima S, Watson GS, Claxton A, Arbuckle M, Callaghan M, Tsai E, Plymate SR, Green PS, Leverenz J, Cross D, Gerton B (2012) Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial. Arch Neurol 69:29–38

    Article  PubMed  Google Scholar 

  15. Kellar D, Lockhart SN, Aisen P, Raman R, Rissman RA, Brewer J, Craft S (2021) Intranasal insulin reduces white matter hyperintensity progression in association with improvements in cognition and CSF biomarker profiles in Mild cognitive Impairment and Alzheimer’s disease. J Prev Alzheimers Dis 8:240–248

    CAS  PubMed  Google Scholar 

  16. De Felice FG, Vieira MN, Bomfim TR, Decker H, Velasco PT, Lambert MP, Viola KL, Zhao WQ, Ferreira ST, Klein WL (2009) Protection of synapses against Alzheimer’s-linked toxins: insulin signaling prevents the pathogenic binding of abeta oligomers. Proc Natl Acad Sci USA 106:1971–1976

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wozniak M, Rydzewski B, Baker SP, Raizada MK (1993) The cellular and physiological actions of insulin in the central nervous system. Neurochem Int 22:1–10

    Article  CAS  PubMed  Google Scholar 

  18. Schubert M, Brazil DP, Burks DJ, Kushner JA, Ye J, Flint CL, Farhang-Fallah J, Dikkes P, Warot XM, Rio C, Corfas G, White MF (2003) Insulin receptor substrate-2 deficiency impairs brain growth and promotes tau phosphorylation. J Neurosci 23:7084–7092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xu QG, Li XQ, Kotecha SA, Cheng C, Sun HS, Zochodne DW (2004) Insulin as an in vivo growth factor. Exp Neurol 188:43–51

    Article  CAS  PubMed  Google Scholar 

  20. Ghasemi R, Haeri A, Dargahi L, Mohamed Z, Ahmadiani A (2013) Insulin in the brain: sources, localization and functions. Mol Neurobiol 47:145–171

    Article  CAS  PubMed  Google Scholar 

  21. Solano DC, Sironi M, Bonfini C, Solerte SB, Govoni S, Racchi M (2000) Insulin regulates soluble amyloid precursor protein release via phosphatidyl inositol 3 kinase-dependent pathway. FASEB J 14:1015–1022

    Article  CAS  PubMed  Google Scholar 

  22. Gasparini L, Gouras GK, Wang R, Gross RS, Beal MF, Greengard P, Xu H (2001) Stimulation of beta-amyloid precursor protein trafficking by insulin reduces intraneuronal beta-amyloid and requires mitogen-activated protein kinase signaling. J Neurosci 21:2561–2570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhao L, Teter B, Morihara T, Lim GP, Ambegaokar SS, Ubeda OJ, Frautschy SA, Cole GM (2004) Insulin-degrading enzyme as a downstream target of insulin receptor signaling cascade: implications for Alzheimer’s disease intervention. J Neurosci 24:11120–11126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. De Felice FG (2013) Alzheimer’s disease and insulin resistance: translating basic science into clinical applications. J Clin Invest 123:531–539

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hong M, Lee VM (1997) Insulin and insulin-like growth factor-1 regulate tau phosphorylation in cultured human neurons. J Biol Chem 272:19547–19553

    Article  CAS  PubMed  Google Scholar 

  26. Cheng CM, Tseng V, Wang J, Wang D, Matyakhina L, Bondy CA (2005) Tau is hyperphosphorylated in the insulin-like growth factor-I null brain. Endocrinology 146:5086–5091

    Article  CAS  PubMed  Google Scholar 

  27. Ma QL, Yang F, Rosario ER, Ubeda OJ, Beech W, Gant DJ, Chen PP, Hudspeth B, Chen C, Zhao Y, Vinters HV, Frautschy SA, Cole GM (2009) Beta-amyloid oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c-Jun N-terminal kinase signaling: suppression by omega-3 fatty acids and curcumin. J Neurosci 29:9078–9089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bruning JC, Gautam D, Burks DJ, Gillette J, Schubert M, Orban PC, Klein R, Krone W, Muller-Wieland D, Kahn CR (2000) Role of brain insulin receptor in control of body weight and reproduction. Science 289:2122–2125

    Article  CAS  PubMed  Google Scholar 

  29. Kappeler L, De Magalhaes FC, Dupont J, Leneuve P, Cervera P, Perin L, Loudes C, Blaise A, Klein R, Epelbaum J, Le Bouc Y, Holzenberger M (2008) Brain IGF-1 receptors control mammalian growth and lifespan through a neuroendocrine mechanism. PLoS Biol 8(6):e254

    Article  Google Scholar 

  30. Facchini FS, Hua N, Abbasi F, Reaven GM (2001) Insulin resistance as a predictor of age-related diseases. J Clin Endocrinol Metab 86:3574–3578

    Article  CAS  PubMed  Google Scholar 

  31. Reiman EM, Caselli RJ, Yun LS, Chen K, Bandy D, Minoshima S, Thibodeau SN, Osborne D (1996) Preclinical evidence of Alzheimer’s disease in persons homozygous for the epsilon 4 allele for apolipoprotein E. N Engl J Med 334:752–758

    Article  CAS  PubMed  Google Scholar 

  32. Small GW, Ercoli LM, Silverman DH, Huang SC, Komo S, Bookheimer SY, Lavretsky H, Miller K, Siddarth P, Rasgon NL, Mazziotta JC, Saxena S, Wu HM, Mega MS, Cummings JL, Saunders AM, Pericak-Vance MA, Roses AD, Barrio JR, Phelps ME (2000) Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer’s disease. Proc Natl Acad Sci USA 97:6037–6042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, Iwatsubo T, Jack CR Jr, Kaye J, Montine TJ, Park DC, Reiman EM, Rowe CC, Siemers E, Stern Y, Yaffe K, Carrillo MC, Thies B, Morrison-Bogorad M, Wagster MV, Phelps CH (2011) Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the national institute on aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:280–292

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hoyer S (1998) Is sporadic alzheimer disease the brain type of non-insulin dependent diabetes mellitus? Challenging Hypothesis J Neural Transm (Vienna) 105:415–422

    CAS  Google Scholar 

  35. Gomez-Isla T, Frosch MP (2019) The challenge of defining alzheimer disease based on biomarkers in the absence of symptoms. JAMA Neurol 76:1143–1144

    Article  Google Scholar 

  36. de la Monte SM, Tong M, Daiello LA, Ott BR (2019) Early-stage Alzheimer’s disease is associated with simultaneous systemic and central nervous system dysregulation of insulin-linked metabolic pathways. J Alzheimers Dis 68:657–668

    Article  PubMed  Google Scholar 

  37. Reger MA, Watson GS, Frey WH 2nd, Baker LD, Cholerton B, Keeling ML, Belongia DA, Fishel MA, Plymate SR, Schellenberg GD, Cherrier MM, Craft S (2006) Effects of intranasal insulin on cognition in memory-impaired older adults: modulation by APOE genotype. Neurobiol Aging 27:451–458

    Article  CAS  PubMed  Google Scholar 

  38. Hanyu H, Sato T, Kiuchi A, Sakurai H, Iwamoto T (2009) Pioglitazone improved cognition in a pilot study on patients with Alzheimer’s disease and mild cognitive impairment with diabetes mellitus. J Am Geriatr Soc 57:177–179

    Article  PubMed  Google Scholar 

  39. Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, Tavares R, Xu XJ, Wands JR, de la Monte SM (2005) Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease–is this type 3 diabetes? J Alzheimers Dis 7:63–80

    Article  CAS  PubMed  Google Scholar 

  40. Talbot K, Wang HY, Kazi H, Han LY, Bakshi KP, Stucky A, Fuino RL, Kawaguchi KR, Samoyedny AJ, Wilson RS, Arvanitakis Z, Schneider JA, Wolf BA, Bennett DA, Trojanowski JQ, Arnold SE (2012) Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Invest 122:1316–1338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Moloney AM, Griffin RJ, Timmons S, O’Connor R, Ravid R, O’Neill C (2010) Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer’s disease indicate possible resistance to IGF-1 and insulin signalling. Neurobiol Aging 31:224–243

    Article  CAS  PubMed  Google Scholar 

  42. Pei JJ, Khatoon S, An WL, Nordlinder M, Tanaka T, Braak H, Tsujio I, Takeda M, Alafuzoff I, Winblad B, Cowburn RF, Grundke-Iqbal I, Iqbal K (2003) Role of protein kinase B in Alzheimer’s neurofibrillary pathology. Acta Neuropathol 105:381–392

    Article  CAS  PubMed  Google Scholar 

  43. Rickle A, Bogdanovic N, Volkman I, Winblad B, Ravid R, Cowburn RF (2004) Akt activity in Alzheimer’s disease and other neurodegenerative disorders. NeuroReport 15:955–959

    Article  CAS  PubMed  Google Scholar 

  44. Griffin RJ, Moloney A, Kelliher M, Johnston JA, Ravid R, Dockery P, O’Connor R, O’Neill C (2005) Activation of Akt/PKB, increased phosphorylation of Akt substrates and loss and altered distribution of Akt and PTEN are features of Alzheimer’s disease pathology. J Neurochem 93:105–117

    Article  CAS  PubMed  Google Scholar 

  45. Avila J, Wandosell F, Hernandez F (2010) Role of glycogen synthase kinase-3 in Alzheimer’s disease pathogenesis and glycogen synthase kinase-3 inhibitors. Expert Rev Neurother 10:703–710

    Article  CAS  PubMed  Google Scholar 

  46. Hooper C, Killick R, Lovestone S (2008) The GSK3 hypothesis of Alzheimer’s disease. J Neurochem 104:1433–1439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bomfim TR, Forny-Germano L, Sathler LB, Brito-Moreira J, Houzel JC, Decker H, Silverman MA, Kazi H, Melo HM, McClean PL, Holscher C, Arnold SE, Talbot K, Klein WL, Munoz DP, Ferreira ST, De Felice FG (2012) An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease- associated Abeta oligomers. J Clin Invest 122:1339–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yarchoan M, Toledo JB, Lee EB, Arvanitakis Z, Kazi H, Han LY, Louneva N, Lee VM, Kim SF, Trojanowski JQ, Arnold SE (2014) Abnormal serine phosphorylation of insulin receptor substrate 1 is associated with tau pathology in Alzheimer’s disease and tauopathies. Acta Neuropathol 128:679–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wakabayashi T, Yamaguchi K, Matsui K, Sano T, Kubota T, Hashimoto T, Mano A, Yamada K, Matsuo Y, Kubota N, Kadowaki T, Iwatsubo T (2019) Differential effects of diet- and genetically-induced brain insulin resistance on amyloid pathology in a mouse model of Alzheimer’s disease. Mol Neurodegener 14:15

    Article  PubMed  PubMed Central  Google Scholar 

  50. Confettura AD, Cuboni E, Ammar MR, Jia S, Gomes GM, Yuanxiang P, Raman R, Li T, Grochowska KM, Ahrends R, Karpova A, Dityatev A, Kreutz MR (2022) Neddylation-dependent protein degradation is a nexus between synaptic insulin resistance, neuroinflammation and Alzheimer’s disease. Transl Neurodegener 11:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Denver P, English A, McClean PL (2018) Inflammation, insulin signaling and cognitive function in aged APP/PS1 mice. Brain Behav Immun 70:423–434

    Article  CAS  PubMed  Google Scholar 

  52. Arvanitakis Z, Wang HY, Capuano AW, Khan A, Taib B, Anokye-Danso F, Schneider JA, Bennett DA, Ahima RS, Arnold SE (2020) Brain Insulin signaling, alzheimer disease pathology, and cognitive function. Ann Neurol 88:513–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ferreira LSS, Fernandes CS, Vieira MNN, De Felice FG (2018) Insulin resistance in Alzheimer’s disease. Front Neurosci 12:830

    Article  PubMed  PubMed Central  Google Scholar 

  54. Griffith CM, Eid T, Rose GM, Patrylo PR (2018) Evidence for altered insulin receptor signaling in Alzheimer’s disease. Neuropharmacology 136:202–215

    Article  CAS  PubMed  Google Scholar 

  55. Rivera EJ, Goldin A, Fulmer N, Tavares R, Wands JR, de la Monte SM (2005) Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer’s disease: link to brain reductions in acetylcholine. J Alzheimers Dis 8:247–268

    Article  CAS  PubMed  Google Scholar 

  56. Soto M, Cai W, Konishi M, Kahn CR (2019) Insulin signaling in the hippocampus and amygdala regulates metabolism and neurobehavior. Proc Natl Acad Sci USA 116:6379–6384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bendlin BB (2019) Antidiabetic therapies and Alzheimer disease. Dialogues Clin Neurosci 21:83–91

    Article  PubMed  PubMed Central  Google Scholar 

  58. Morris JK, Burns JM (2012) Insulin: an emerging treatment for Alzheimer’s disease dementia? Curr Neurol Neurosci Rep 12:520–527

    Article  PubMed  PubMed Central  Google Scholar 

  59. Markowicz-Piasecka M, Sikora J, Szydlowska A, Skupien A, Mikiciuk-Olasik E, Huttunen KM (2017) Metformin—a future therapy for neurodegenerative diseases: theme: drug discovery, development and delivery in Alzheimer’s disease guest editor: Davide Brambilla. Pharm Res 34:2614–2627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chen Y, Zhao Y, Dai CL, Liang Z, Run X, Iqbal K, Liu F, Gong CX (2014) Intranasal insulin restores insulin signaling, increases synaptic proteins, and reduces abeta level and microglia activation in the brains of 3xTg-AD mice. Exp Neurol 261:610–619

    Article  CAS  PubMed  Google Scholar 

  61. Salameh TS, Bullock KM, Hujoel IA, Niehoff ML, Wolden-Hanson T, Kim J, Morley JE, Farr SA, Banks WA (2015) Central nervous system delivery of intranasal insulin: mechanisms of uptake and effects on cognition. J Alzheimers Dis 47:715–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. de la Monte SM (2012) Early intranasal insulin therapy halts progression of neurodegeneration: progress in Alzheimer’s disease therapeutics. Aging Health 8:61–64

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kern W, Peters A, Fruehwald-Schultes B, Deininger E, Born J, Fehm HL (2001) Improving influence of insulin on cognitive functions in humans. Neuroendocrinology 74:270–280

    Article  CAS  PubMed  Google Scholar 

  64. Craft S, Raman R, Chow TW, Rafii MS, Sun CK, Rissman RA, Donohue MC, Brewer JB, Jenkins C, Harless K, Gessert D, Aisen PS (2020) Safety, efficacy, and feasibility of intranasal insulin for the treatment of mild cognitive impairment and alzheimer disease dementia: a randomized clinical trial. JAMA Neurol 77:1099–1109

    Article  PubMed  Google Scholar 

  65. Vandal M, White PJ, Tremblay C, St-Amour I, Chevrier G, Emond V, Lefrancois D, Virgili J, Planel E, Giguere Y, Marette A, Calon F (2014) Insulin reverses the high-fat diet-induced increase in brain abeta and improves memory in an animal model of alzheimer disease. Diabetes 63:4291–4301

    Article  CAS  PubMed  Google Scholar 

  66. Escribano L, Simon AM, Gimeno E, Cuadrado-Tejedor M, Lopez de Maturana R, Garcia-Osta A, Ricobaraza A, Perez-Mediavilla A, Del Rio J, Frechilla D (2010) Rosiglitazone rescues memory impairment in Alzheimer’s transgenic mice: mechanisms involving a reduced amyloid and tau pathology. Neuropsychopharmacology 35:1593–1604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pedersen WA, McMillan PJ, Kulstad JJ, Leverenz JB, Craft S, Haynatzki GR (2006) Rosiglitazone attenuates learning and memory deficits in Tg2576 Alzheimer mice. Exp Neurol 199:265–273

    Article  CAS  PubMed  Google Scholar 

  68. Watson GS, Cholerton BA, Reger MA, Baker LD, Plymate SR, Asthana S, Fishel MA, Kulstad JJ, Green PS, Cook DG, Kahn SE, Keeling ML, Craft S (2005) Preserved cognition in patients with early Alzheimer disease and amnestic mild cognitive impairment during treatment with rosiglitazone: a preliminary study. Am J Geriatr Psychiatry 13:950–958

    PubMed  Google Scholar 

  69. Gold M, Alderton C, Zvartau-Hind M, Egginton S, Saunders AM, Irizarry M, Craft S, Landreth G, Linnamagi U, Sawchak S (2010) Rosiglitazone monotherapy in mild-to-moderate Alzheimer’s disease: results from a randomized, double-blind, placebo-controlled phase III study. Dement Geriatr Cogn Disord 30:131–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Harrington C, Sawchak S, Chiang C, Davies J, Donovan C, Saunders AM, Irizarry M, Jeter B, Zvartau-Hind M, van Dyck CH, Gold M (2011) Rosiglitazone does not improve cognition or global function when used as adjunctive therapy to AChE inhibitors in mild-to-moderate Alzheimer’s disease: two phase 3 studies. Curr Alzheimer Res 8:592–606

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James J. Yang.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest exists.

Ethical Approval

This article does not contain any studies with human participants or animal by any of the authors.

Informed consent

for this type of study formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J.J. Brain insulin resistance and the therapeutic value of insulin and insulin-sensitizing drugs in Alzheimer’s disease neuropathology. Acta Neurol Belg 122, 1135–1142 (2022). https://doi.org/10.1007/s13760-022-01907-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13760-022-01907-2

Keywords

Navigation