Skip to main content

Advertisement

Log in

Clinical approach to neurodegenerative disorders in childhood: an updated overview

  • Review article
  • Published:
Acta Neurologica Belgica Aims and scope Submit manuscript

A Correction to this article was published on 26 August 2019

This article has been updated

Abstract

Neurodegenerative disorders include a group of severe diseases that share a core including a gradual loss of previously acquired motor, sensory and cognitive functions. In pediatric age, the main diagnostic issues are the discrimination between the loss of previously acquired competencies and the lack of achievement of specific developmental milestones. An ideal classification of these disorders could be based on the combination of genetic, clinical and neuroimaging features. Diagnostic workup should be organized with a special attention to the few diseases with an available and effective therapeutic treatment. The present paper reports a proposal of classification that is based on the prominently involved structure and summarizes the hallmarks for clinical approach and therapeutic management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

  • 26 August 2019

    The author regret that, in the section ���Dietary treatments��� the sentence ���Ketogenic diet is the gold standard therapy for Glut 1 deficiency and pyruvate kinase deficiency but it can be also applied in severe drug-resistant epileptic encephalopathies [4].��� is not correct.

References

  1. Kovacs GG (2017) Concepts and classification of neurodegenerative diseases. Handb Clin Neurol 145:301–307

    Article  PubMed  Google Scholar 

  2. Jan MM (2002) Clinical approach to children with suspected neurodegenerative disorders. Neurosciences (Riyadh) 7:2–6

    Google Scholar 

  3. Waldman AT (2018) Leukodystrophies. Continuum (Minneap Minn) 24:130–149

    Google Scholar 

  4. Pierre G (2013) Neurodegenerative disorders and metabolic disease. Arch Dis Child 98:618–624

    Article  PubMed  Google Scholar 

  5. van der Knaap MS, Bugiani M (2017) Leukodystrophies: a proposed classification system based on pathological changes and pathogenetic mechanisms. Acta Neuropathol 134:351–382

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Parikh S, Bernard G, Leventer RJ, van der Knaap MS, van Hove J, Pizzino A et al (2015) A clinical approach to the diagnosis of patients with leukodystrophies and genetic leukoencephalopathies. Mol Genet Metab 114:501–515

    Article  CAS  PubMed  Google Scholar 

  7. Bonkowsky JL, Nelson C, Kingston JL, Filloux FM, Mundorff MB, Srivastava R (2010) The burden of inherited leukodystrophies in children. Neurology 75:718–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Charzewska A, Wierzba J, Iżycka-Świeszewska E, Bekiesińska-Figatowska M, Jurek M, Gintowt A et al (2016) Hypomyelinating leukodystrophies—a molecular insight into the white matter pathology. Clin Genet 90:293–304

    Article  CAS  PubMed  Google Scholar 

  9. Zhou P, He N, Zhang JW, Lin ZJ, Wang J, Yan LM et al (2018) Novel mutations and phenotypes of epilepsy-associated genes in epileptic encephalopathies. Genes Brain Behav. https://doi.org/10.1111/gbb.12456

    Article  PubMed  Google Scholar 

  10. Helbig I, von Deimling M, Marsh ED (2017) Epileptic encephalopathies as neurodegenerative disorders. Adv Neurobiol 15:295–315

    Article  PubMed  Google Scholar 

  11. Scheffer IE, Berkovic S, Capovilla G, Connolly MB, French J, Guilhoto L et al (2017) ILAE classification of the epilepsies: position paper of the ILAE commission for classification and terminology. Epilepsia 58:512–521

    Article  PubMed  PubMed Central  Google Scholar 

  12. Parrini E, Marini C, Mei D, Galuppi A, Cellini E, Pucatti D et al (2017) Diagnostic targeted resequencing in 349 patients with drug-resistant pediatric epilepsies identifies causative mutations in 30 different genes. Hum Mutat 38:216–222

    Article  CAS  PubMed  Google Scholar 

  13. Gokben S, Onay H, Yilmaz S, Atik T, Serdaroglu G, Tekin H et al (2017) Targeted next generation sequencing: the diagnostic value in early-onset epileptic encephalopathy. Acta Neurol Belg 117:131–138

    Article  PubMed  Google Scholar 

  14. Schulz A, Kohlschütter A, Mink J, Simonati A, Williams R (2013) NCL diseases—clinical perspectives. Biochim Biophys Acta 1832(11):1801–1806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Geberhiwot T, Moro A, Dardis A, Ramaswami U, Sirrs S, Marfa MP et al (2018) International Niemann-Pick Disease Registry (INPDR). Consensus clinical management guidelines for Niemann-Pick disease type C. Orphanet J Rare Dis 13:50

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cao J, Wu H, Li Z (2018) Recent perspectives of pediatric mitochondrial diseases. Exp Ther Med 15:13–18

    CAS  PubMed  Google Scholar 

  17. Mizuguchi T, Nakashima M, Kato M, Yamada K, Okanishi T, Ekhilevitch N et al (2017) PARS2 and NARS2 mutations in infantile-onset neurodegenerative disorder. J Hum Genet 62:525–529

    Article  CAS  PubMed  Google Scholar 

  18. Flor-de-Lima F, Sampaio M, Nahavandi N, Fernandes S, Leão M (2014) Alsin related disorders: literature review and case study with novel mutations. Case Rep Genet 691515

  19. de Souza PVS, de Rezende Pinto WBV, de Rezende Batistella GN, Bortholin T, Oliveira ASB (2017) Hereditary spastic paraplegia: clinical and genetic hallmarks. Cerebellum 16:525–551

    Article  PubMed  CAS  Google Scholar 

  20. Lo Giudice T, Lombardi F, Santorelli FM, Kawarai T, Orlacchio A (2014) Hereditary spastic paraplegia: clinical-genetic characteristics and evolving molecular mechanisms. Exp Neurol 261:518–539

    Article  CAS  PubMed  Google Scholar 

  21. Di Meo I, Tiranti V (2018) Classification and molecular pathogenesis of NBIA syndromes. Eur J Paediatr Neurol 22:272–284

    Article  PubMed  Google Scholar 

  22. Salomão RP, Pedroso JL, Gama MT, Dutra LA, Maciel RH, Godeiro-Junior C et al (2016) A diagnostic approach for neurodegeneration with brain iron accumulation: clinical features, genetics and brain imaging. Arq Neuropsiquiatr 74:587–596

    Article  PubMed  Google Scholar 

  23. Inge A (2018) Meijer and Toni Pearson, the twists of pediatric dystonia: phenomenology, classification, and genetics. Semin Pediatr Neurol 25:65–74

    Article  Google Scholar 

  24. Kim SD, Fung VS (2014) An update on Huntington’s disease: from the gene to the clinic. Curr Opin Neurol 27:477–483

    Article  CAS  PubMed  Google Scholar 

  25. Peikert K, Danek A, Hermann A (2017) Current state of knowledge in Chorea-Acanthocytosis as core Neuroacanthocytosis syndrome. Eur J Med Genet S1769–7212(17):30591–30598

    Google Scholar 

  26. Lal D, Becker K, Motameny S, Altmüller J, Thiele H, Nürnberg P et al (2013) Homozygous missense mutation of NDUFV1 as the cause of infantile bilateral striatal necrosis. Neurogenetics 14:85–87

    Article  PubMed  Google Scholar 

  27. Baertling F, Rodenburg RJ, Schaper J, Smeitink JA, Koopman WJ et al (2014) A guide to diagnosis and treatment of Leigh syndrome. J Neurol Neurosurg Psychiatry 85:257–265

    Article  PubMed  Google Scholar 

  28. Namavar Y, Barth PG, Poll-The BT, Baas F (2011) Classification, diagnosis and potential mechanisms in pontocerebellar hypoplasia. Orphanet J Rare Dis 6:50

    Article  PubMed  PubMed Central  Google Scholar 

  29. Venkatesh SD, Kandasamy M, Moily NS, Vaidyanathan R, Kota LN, Adhikarla S et al (2018) Genetic testing for clinically suspected spinocerebellar ataxias: report from a tertiary referral centre in India. J Genet 97:219–224

    Article  PubMed  Google Scholar 

  30. Bodensteiner JB (2014) Friedreich ataxia. Semin Pediatr Neurol 21:72

    Article  PubMed  Google Scholar 

  31. Whitehouse WP (2017) Multidisciplinary care of children and young people with ataxia-telangiectasia. Dev Med Child Neurol 59:670

    Article  PubMed  Google Scholar 

  32. Krieger M, Roos A, Stendel C, Claeys KG, Sonmez FM, Baudis M et al (2013) SIL1 mutations and clinical spectrum in patients with Marinesco-Sjogren syndrome. Brain 136(Pt 12):3634–3644

    Article  PubMed  Google Scholar 

  33. Mercuri E, Finkel RS, Muntoni F, Wirth B, Montes J, Main M et al (2018) Diagnosis and management of spinal muscular atrophy: part 1: recommendations for diagnosis, rehabilitation, orthopedic and nutritional care. Neuromuscul Disord 28:103–115

    Article  PubMed  Google Scholar 

  34. Baets J, Deconinck T, De Vriendt E et al (2011) Genetic spectrum of hereditary neuropathies with onset in the first year of life. Brain 134(Pt 9):2664–2676

    Article  PubMed  PubMed Central  Google Scholar 

  35. Orssaud C, Robert MP, Bremond Gignac D (2018) Hereditary optic neuropathies in pediatric ophthalmology. J Fr Ophtalmol 41(5):402–406

    Article  CAS  PubMed  Google Scholar 

  36. Carter JC, Sheehan DW, Prochoroff A, Birnkrant DJ (2018) Muscular dystrophies. Clin Chest Med 39:377–389

    Article  PubMed  Google Scholar 

  37. Gutierrez J, Issacson RS, Koppel BS (2010) Subacute sclerosing panencephalitis: an update. Dev Med Child Neurol 52:901–907

    Article  PubMed  Google Scholar 

  38. Wilmshurst JM, Hammond CK, Donald K, Hoare J, Cohen K, Eley B (2018) NeuroAIDS in children. Handb Clin Neurol 152:99–116

    Article  PubMed  Google Scholar 

  39. Thompson AJ, Baranzini SE, Geurts J, Hemmer B, Ciccarelli O (2018) Multiple sclerosis. Lancet 391:1622–1636

    Article  PubMed  Google Scholar 

  40. Granata T, Andermann F (2013) Rasmussen encephalitis. Handb Clin Neurol 111:511–519

    Article  PubMed  Google Scholar 

  41. Berry-Kravis E, Chin J, Hoffmann A, Winston A, Stoner R, LaGorio L et al (2018) Long-term treatment of Niemann-Pick type C1 disease with intrathecal 2-hydroxypropyl-β-cyclodextrin. Pediatr Neurol 80:24–34

    Article  PubMed  PubMed Central  Google Scholar 

  42. Maljevic S, Reid CA, Petrou S (2017) Models for discovery of targeted therapy in genetic epileptic encephalopathies. J Neurochem 143(1):30–48

    Article  CAS  PubMed  Google Scholar 

  43. Schulz A, Ajayi T, Specchio N, de Los Reyes E, Gissen P, Ballon D et al (2018) CLN2 Study Group. Study of intraventricular cerliponase alfa for CLN2 disease. N Engl J Med 378:1898–1907

    Article  CAS  PubMed  Google Scholar 

  44. Chessa L, Leuzzi V, Plebani A, Soresina A, Micheli R, D’Agnano D et al (2014) Intra-erythrocyte infusion of dexamethasone reduces neurological symptoms in ataxia telangiectasia patients: results of a phase 2 trial. Orphanet J Rare Dis 9:5

    Article  PubMed  PubMed Central  Google Scholar 

  45. Leuzzi V, Micheli R, D’Agnano D, Molinaro A, Venturi T, Plebani A et al (2015) Positive effect of erythrocyte-delivered dexamethasone in ataxia-telangiectasia. Neurol Neuroimmunol Neuroinflamm 2(3):e98

    Article  PubMed  PubMed Central  Google Scholar 

  46. Biffi A, Montini E, Lorioli L, Cesani M, Fumagalli F, Plati T et al (2013) Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science 341:1233158

    Article  PubMed  CAS  Google Scholar 

  47. Gordon-Lipkin E, Fatemi A (2018) Current therapeutic approaches in leukodystrophies: a review. J Child Neurol 33:861–868

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bailey RM, Armao D, Nagabhushan Kalburgi S, Gray SJ (2018) Development of intrathecal AAV9 gene therapy for giant axonal neuropathy. Mol Ther Methods Clin Dev 9:160–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Georgiou E, Sidiropoulou K, Richter J, Papaneophytou C, Sargiannidou I, Kagiava A et al (2017) Gene therapy targeting oligodendrocytes provides therapeutic benefit in a leukodystrophy model. Brain 140(3):599–616

    PubMed  PubMed Central  Google Scholar 

  50. Finkel RS, Mercuri E, Darras BT, Connolly AM, Kuntz NL, Kirschner J et al (2017) ENDEAR Study Group. Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N Engl J Med 377:1723–1732

    Article  CAS  PubMed  Google Scholar 

  51. McDonald CM, Campbell C, Torricelli RE, Finkel RS, Flanigan KM, Goemans N et al (2017) Ataluren in patients with nonsense mutation Duchenne muscular dystrophy (ACT DMD): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 390(10101):1489–1498

    Article  CAS  PubMed  Google Scholar 

  52. Charleston JS, Schnell FJ, Dworzak J, Donoghue C, Lewis S, Chen L et al (2018) Eteplirsen treatment for Duchenne muscular dystrophy: exon skipping and dystrophin production. Neurology 90:e2146–e2154

    Article  CAS  PubMed  Google Scholar 

  53. Hagemann TL, Powers B, Mazur C, Kim A, Wheeler S, Hung G et al (2018) Antisense suppression of glial fibrillary acidic protein as a treatment for Alexander disease. Ann Neurol 83(1):27–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tabrizi SJ, Leavitt BR, Landwehrmeyer GB, Wild EJ, Saft C, Barker RA et al (2019) Targeting Huntingtin expression in patients with Huntington’s Disease. N Engl J Med 1:1. https://doi.org/10.1056/nejmoa1900907

    Article  CAS  Google Scholar 

  55. Hughes MP, Smith DA, Morris L, Fletcher C, Colaco A, Huebecker M et al (2018) AAV9 intracerebroventricular gene therapy improves lifespan, locomotor function and pathologyin a mouse model of Niemann-Pick type C1 disease. Hum Mol Genet 27:3079–3098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang Y, Tian Z, Yuan J, Liu C, Liu HL, Ma SQ et al (2017) The progress of gene therapy for Leber’s optic hereditary neuropathy. Curr Gene Ther 17:320–326

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Mastrangelo.

Ethics declarations

Conflict of interest

The author has no funding or conflict of interest to declare. This article does not contain any studies with human participants or animals performed by the author. The MRIs in Fig. 2 were realized during an ordinary diagnostic workup of the involved patients and a parental informed consent for their publication was obtained for each one of them.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mastrangelo, M. Clinical approach to neurodegenerative disorders in childhood: an updated overview. Acta Neurol Belg 119, 511–521 (2019). https://doi.org/10.1007/s13760-019-01160-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13760-019-01160-0

Keywords

Navigation