Skip to main content
Log in

Is perception of visual verticality intact in patients with idiopathic cervical dystonia?

  • Original Article
  • Published:
Acta Neurologica Belgica Aims and scope Submit manuscript

Abstract

Idiopathic cervical dystonia (CD) is a focal dystonia characterized by an abnormal tilted or twisted head position. This abnormal head position could lead to a distorted perception of the visual vertical and spatial orientation. The aim of this cross-sectional study was to investigate whether the perception of the visual vertical is impaired in patients with CD. The subjective visual vertical test (SVV) was measured in 24 patients with CD and 30 controls. The SVV test is conducted in a completely darkened room. A laser bar is projected on an opposing white wall, which is deviated from the earth’s gravitational vertical. Participants were seated with their head unrestrained and were instructed to position this bar vertically. The deviations in degrees (°) are corrected for the side of laterocollis in order to measure the E-effect. We found that patients were able to position the laser bar as equally close to the earth’s gravitational vertical as controls (+ 0.67° SD ± 2.12 vs + 0.29° SD ± 1.08, p = 0.43). No E-effect was measured. Notwithstanding the abnormal position of the head, the perception of the visual vertical in patients with idiopathic CD is intact, possibly because of central neural compensatory mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jinnah HA, Albanese A (2014) The new classification system for the dystonias: why was it needed and how was it developed? Mov Disord Clin Pract 1:280–284. https://doi.org/10.1002/mdc3.12100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Patel Neepa, Jankovic Joseph, Hallett M (2014) Sensory aspects of movement disorders. Lancet Neurol 13:583–592. https://doi.org/10.1016/S1474-4422(13)70213-8

    Article  Google Scholar 

  3. Coelho M, Valadas AF, Mestre T, Ferreira JJ (2009) Cervical dystonia pain and quality of life in the treatment of cervical dystonia. Eur Neurol Rev 4:74–78

    Article  Google Scholar 

  4. Bottini G, Karnath H-O, Vallar G, Sterzi R, Frith CD, Frackowiak RSJ, Paulesu E (2001) Cerebral representations for egocentric space: functional-anatomical evidence from caloric vestibular stimulation and neck vibration. Brain 124:1182–1196. https://doi.org/10.1093/brain/124.6.1182

    Article  CAS  PubMed  Google Scholar 

  5. Colosimo C, Berardelli A (2011) Clinical phenomenology of dystonia. Int Rev Neurobiol. https://doi.org/10.1016/B978-0-12-381328-2.00018-3

    PubMed  Google Scholar 

  6. Obermann M, Yaldizli O, De Greiff A et al (2007) Morphometric changes of sensorimotor structures in focal dystonia. Mov Disord 22:1117–1123. https://doi.org/10.1002/mds.21495

    Article  PubMed  Google Scholar 

  7. Prell T, Peschel T, Köhler B et al (2013) Structural brain abnormalities in cervical dystonia. BMC Neurosci 14:123. https://doi.org/10.1186/1471-2202-14-123

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tamburin S, Manganotti P, Marzi CA et al (2002) Abnormal somatotopic arrangement of sensorimotor interactions in dystonic patients. Brain 125:2719–2730

    Article  PubMed  Google Scholar 

  9. Tinazzi M, Rosso T, Fiaschi A (2003) Role of the somatosensory system in primary dystonia. Mov Disord 18:605–622. https://doi.org/10.1002/mds.10398

    Article  PubMed  Google Scholar 

  10. Tinazzi M, Priori A, Bertolasi L et al (2000) Abnormal central integration of a dual somatosensory input in dystonia. Evidence for sensory overflow. Brain 123(Pt 1):42–50. https://doi.org/10.1093/brain/123.1.42

    Article  PubMed  Google Scholar 

  11. Delnooz CCS, Pasman JW, Beckmann CF, van de Warrenburg BPC (2013) Task-free functional MRI in cervical dystonia reveals multi-network changes that partially normalize with botulinum toxin. PLoS One 8:e62877. https://doi.org/10.1371/journal.pone.0062877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zoons E, Booij J, Nederveen AJ et al (2011) Structural, functional and molecular imaging of the brain in primary focal dystonia—a review. Neuroimage 56:1011–1020. https://doi.org/10.1016/j.neuroimage.2011.02.045

    Article  CAS  PubMed  Google Scholar 

  13. Neychev VK, Gross RE, Lehéricy S et al (2011) The functional neuroanatomy of dystonia. Neurobiol Dis 42:185–201. https://doi.org/10.1016/j.nbd.2011.01.026

    Article  PubMed  PubMed Central  Google Scholar 

  14. Malone A, Manto M, Hass C (2014) Dissecting the links between cerebellum and dystonia. Cerebellum 13:666–668. https://doi.org/10.1007/s12311-014-0601-4

    Article  PubMed  Google Scholar 

  15. Filip P, Lungu OV, Shaw DJ et al (2013) The mechanisms of movement control and time estimation in cervical dystonia patients. Neural Plast. https://doi.org/10.1155/2013/908741

    PubMed  PubMed Central  Google Scholar 

  16. LeDoux MS, Brand KA (2003) Secondary cervical dystonia associated with structural lesions of the central nervous system. Mov Disord 18:60–69. https://doi.org/10.1002/mds.10301

    Article  PubMed  Google Scholar 

  17. Bonan IV, Guettard E, Leman MC et al (2006) Subjective visual vertical perception relates to balance in acute stroke. Arch Phys Med Rehabil 87:642–646. https://doi.org/10.1016/j.apmr.2006.01.019

    Article  PubMed  Google Scholar 

  18. Horak FBSC (1994) Role of the vestibular system in postural control. Davis, Philadelphia

    Google Scholar 

  19. Karnath HO, Sievering D, Fetter M (1994) The interactive contribution of neck muscle proprioception and vestibular stimulation to subjective “straight ahead” orientation in man. Exp Brain Res 101:140–146. https://doi.org/10.1007/BF00243223

    Article  CAS  PubMed  Google Scholar 

  20. Mittelstaedt H (1999) The role of the otoliths in perception of the vertical and in path integration. Ann N Y Acad Sci 28:334–344

    Article  Google Scholar 

  21. Cohen YE, Andersen RA (2002) A common reference frame for movement plans in the posterior parietal cortex. Nat Rev Neurosci 3(7):553–562

    Article  CAS  PubMed  Google Scholar 

  22. Neggers SFW, Van der Lubbe RHJ, Ramsey NF, Postma A (2006) Interactions between ego- and allocentric neuronal representations of space. Neuroimage 31:320–331. https://doi.org/10.1016/j.neuroimage.2005.12.028

    Article  CAS  PubMed  Google Scholar 

  23. Anastasopoulos D, Nasios G, Psilas K et al (1998) What is straight ahead to a patient with torticollis? Brain 121:91–101

    Article  PubMed  Google Scholar 

  24. Anastasopoulos D, Bhatia K, Bisdorff A et al (1997) Perception of spatial orientation in spasmodic torticollis. Part 2: the visual vertical. Mov Disord 12:709–714. https://doi.org/10.1002/mds.870120514

    Article  CAS  PubMed  Google Scholar 

  25. Hinse P, Leplow B, Humbert T et al (1996) Impairment of visuospatial function in idiopathic spasmodic torticollis. J Neurol 243:29–33

    Article  CAS  PubMed  Google Scholar 

  26. Müller SV, Gläser P, Tröger M et al (2005) Disturbed egocentric space representation in cervical dystonia. Mov Disord Off J Mov Disord Soc 20:58–63. https://doi.org/10.1002/mds.20293

    Article  Google Scholar 

  27. Howard IP (1982) Human visual orientation. Wiley, London

    Google Scholar 

  28. Vibert D, Häusler R, Safran AB (1999) Subjective visual vertical in peripheral unilateral vestibular diseases. J Vestib Res 9:145–152. https://doi.org/10.3757/jser.68.85

    CAS  PubMed  Google Scholar 

  29. Tarnutzer AA, Bockisch CJ, Olasagasti I, Straumann D (2012) Egocentric and allocentric alignment tasks are affected by otolith input. J Neurophysiol 107:3095–3106. https://doi.org/10.1152/jn.00724.2010

    Article  PubMed  Google Scholar 

  30. Alberts BBGT, Selen LPJ, Bertolini G et al (2016) Dissociating vestibular and somatosensory contributions to spatial orientation. J Neurophysiol 116:30–40. https://doi.org/10.1152/jn.00056.2016

    Article  PubMed  PubMed Central  Google Scholar 

  31. Anastasopoulos D, Haslwanter T, Bronstein A et al (1997) Dissociation between the perception of body verticality and the visual vertical in acute peripheral vestibular disorder in humans. Neurosci Lett 233:151–153. https://doi.org/10.1016/S0304-3940(97)00639-3

    Article  CAS  PubMed  Google Scholar 

  32. Bisdorff AR, Wolsley CJ, Anastasopoulos D et al (1996) The perception of body vertically (subjective postural vertical) in peripheral and central vestibular disorders. Brain 119:1523–1534

    Article  PubMed  Google Scholar 

  33. Curthoys IS, Halmagyi GM, Dai MJ (1991) The acute effects of unilateral vestibular neurectomy on sensory and motor tests of human otolithic function. Acta Otolaryngol Suppl 481:5–10

    Article  CAS  PubMed  Google Scholar 

  34. Yang TH, Oh SY, Kwak K et al (2014) Topology of brainstem lesions associated with subjective visual vertical tilt. Neurology 82:1968–1975. https://doi.org/10.1212/WNL.0000000000000480

    Article  PubMed  Google Scholar 

  35. Müller G (1916) Über das Aubertsche phänomen. Z Sinnesphysiol 49:109–246

    Google Scholar 

  36. Albanese A, Asmus F, Bhatia KP et al (2011) EFNS guidelines on diagnosis and treatment of primary dystonias. Eur J Neurol 18:5–18. https://doi.org/10.1111/j.1468-1331.2010.03042.x

    Article  CAS  PubMed  Google Scholar 

  37. Tsui JK, Eisen A, Stoessl AJ et al (1986) Double-blind study of botulinum toxin in spasmodic torticollis. Lancet 328(8501):245–247. http://dx.doi.org/10.1016/S0140-6736(86)92070-2

    Article  Google Scholar 

  38. Comella CL, Stebbins GT, Goetz CG et al (1997) Teaching tape for the motor section of the Toronto Western Spasmodic Torticollis Scale. Mov Disord 12:570–575. https://doi.org/10.1002/mds.870120414

    Article  CAS  PubMed  Google Scholar 

  39. Cano SJ, Warner TT, Thompson AJ et al (2008) The cervical dystonia impact profile (CDIP-58): can a Rasch developed patient reported outcome measure satisfy traditional psychometric criteria? Health Qual Life Outcomes 6:58. https://doi.org/10.1186/1477-7525-6-58

    Article  PubMed  PubMed Central  Google Scholar 

  40. Albanese A, Bhatia K, Bressman SB et al (2013) Phenomenology and classification of dystonia: a consensus update. Mov Disord 28:863–873. https://doi.org/10.1002/mds.25475

    Article  PubMed  PubMed Central  Google Scholar 

  41. Saeys W, Vereeck L, Bedeer A et al (2010) Suppression of the E-effect during the subjective visual and postural vertical test in healthy subjects. Eur J Appl Physiol 109:297–305. https://doi.org/10.1007/s00421-010-1355-4

    Article  PubMed  Google Scholar 

  42. Saeys W, Vereeck L, Truijen S et al (2012) Influence of sensory loss on the perception of verticality in stroke patients. Disabil Rehabil 34:1965–1970. https://doi.org/10.3109/09638288.2012.671883

    Article  PubMed  Google Scholar 

  43. Hoppenbrouwers M, Wuyts FL, Van de Heyning PH (2004) Suppression of the E-effect during the subjective visual vertical test. NeuroReport 15:1–4. https://doi.org/10.1097/01.wnr.0000107304.28024.19

    Article  Google Scholar 

  44. Rosengren SM, Colebatch JG (2010) Vestibular evoked myogenic potentials are intact in cervical dystonia. Mov Disord 25:2845–2853. https://doi.org/10.1002/mds.23422

    Article  PubMed  Google Scholar 

  45. Peterka RJ (2002) Sensorimotor integration in human postural control. J Neurophysiol 88:1097–1118. https://doi.org/10.1152/jn.00605.2001

    Article  CAS  PubMed  Google Scholar 

  46. Peterka RJ, Loughlin PJ (2004) Dynamic regulation of sensorimotor integration in human postural control. J Neurophysiol 91:410–423. https://doi.org/10.1152/jn.00516.2003

    Article  PubMed  Google Scholar 

  47. Zupan LH, Merfeld DM, Darlot C (2002) Using sensory weighting to model the influence of canal, otolith and visual cues on spatial orientation and eye movements. Biol Cybern 86:209–230. https://doi.org/10.1007/s00422-001-0290-1

    Article  CAS  PubMed  Google Scholar 

  48. Clemens IAH, De Vrijer M, Selen LPJ et al (2011) Multisensory processing in spatial orientation: an inverse probabilistic approach. J Neurosci 31:5365–5377. https://doi.org/10.1523/JNEUROSCI.6472-10.2011

    Article  CAS  PubMed  Google Scholar 

  49. Bonan IV, Gaillard F, Ponche ST et al (2015) Early post-stroke period: a privileged time for sensory re-weighting? J Rehabil Med 47:516–522. https://doi.org/10.2340/16501977-1968

    Article  PubMed  Google Scholar 

  50. Münchau A, Bronstein AM (2001) Role of the vestibular system in the pathophysiology of spasmodic torticollis. J Neurol Neurosurg Psychiatry 71:285–288

    Article  PubMed  PubMed Central  Google Scholar 

  51. De Pauw J, Mercelis R, Hallemans A, Michiels S, Truijen S, Cras P, De Hertogh W (2017) Cervical sensorimotor control in idiopathic cervical dystonia: a cross-sectional study. Brain Behav. https://doi.org/10.1002/brb3.735

    PubMed  PubMed Central  Google Scholar 

  52. Vaitl D, Mittelstaedt H, Saborowski R et al (2002) Shifts in blood volume alter the perception of posture: further evidence for somatic graviception. Int J Psychophysiol 44:1–11. https://doi.org/10.1016/S0167-8760(01)00184-2

    Article  PubMed  Google Scholar 

  53. Trousselard M, Barraud PA, Nougier V et al (2004) Contribution of tactile and interoceptive cues to the perception of the direction of gravity. Cogn Brain Res 20:355–362. https://doi.org/10.1016/j.cogbrainres.2004.03.008

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joke De Pauw.

Ethics declarations

Funding

This study was funded by Academic project Antwerp University G815.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Pauw, J., De Hertogh, W., Mercelis, R. et al. Is perception of visual verticality intact in patients with idiopathic cervical dystonia?. Acta Neurol Belg 118, 77–84 (2018). https://doi.org/10.1007/s13760-017-0853-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13760-017-0853-0

Keywords

Navigation