Skip to main content
Log in

Limb-kinetic apraxia due to injury of corticofugal tracts from secondary motor area in patients with corona radiata infarct

  • Original Article
  • Published:
Acta Neurologica Belgica Aims and scope Submit manuscript

Abstract

Limb-kinetic apraxia (LKA) is defined as an execution disorder of movements, resulting from injury of the corticofugal tract (CFT) from the secondary motor area. Diagnosis of LKA is difficult because it is made by clinical observation of movements. In this study, using diffusion tensor tractography (DTT), we attempted to investigate injury of the CFT from the secondary motor area in patients with corona radiata infarct. Twenty patients with corona radiata infarct were recruited. A probabilistic tractography method was used in fiber tracking for reconstruction of the corticospinal tract (CST) and CFT. Fractional anisotropy (FA), mean diffusivity, and tract volume of the CSTs and CFTs from the dorsal premotor cortex (dPMC) and supplementary motor area (SMA) were measured. In the affected hemisphere, FA values of the CST from the precentral hand knob and the CFT from the dPMC were significantly decreased compared with those of the unaffected hemisphere (p < 0.05). The tract volumes of the CST from the precentral hand knob and the CFTs from the dPMC and SMA in the affected hemisphere were also significantly decreased compared with those of the unaffected hemisphere (p < 0.05). We demonstrated concurrent injury of the CFTs from the secondary motor area along with injury of the CST in patients with corona radiata infarct, using DTT. Our results suggest that LKA ascribed to injury of the CFTs from the secondary motor area could be accompanied by injury of the CST ascribed to the corona radiata infarct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Leiguarda RC, Marsden CD (2000) Limb apraxias: higher-order disorders of sensorimotor integration. Brain 123(Pt 5):860–879

    Article  PubMed  Google Scholar 

  2. Ochipa C, Gonzalez Rothi LJ (2000) Limb apraxia. Semin Neurol 20(4):471–478. doi:10.1055/s-2000-13180

    Article  CAS  PubMed  Google Scholar 

  3. Heilman KM, Valenstein E (2003) Clinical neuropsychology, 4th edn. Oxford University Press, Oxford

    Google Scholar 

  4. Gross RG, Grossman M (2008) Update on apraxia. Curr Neurol Neurosci Rep 8(6):490–496

    Article  PubMed  Google Scholar 

  5. Heilman KM (2010) Apraxia. Continuum (Minneap Minn) 16(4 Behavioral Neurology):86–98. doi:10.1212/01.CON.0000368262.53662.08

    Google Scholar 

  6. Larner AJ (2001) A dictionary of neurological signs: clinical neurosemiology. Kluwer, Boston

    Google Scholar 

  7. Hong JH, Lee J, Cho YW, Byun WM, Cho HK, Son SM, Jang SH (2012) Limb apraxia in a patient with cerebral infarct: diffusion tensor tractography study. NeuroRehabilitation 30(4):255–259. doi:10.3233/NRE-2012-0753

    PubMed  Google Scholar 

  8. Jang SH (2013) Motor recovery by improvement of limb-kinetic apraxia in a chronic stroke patient. NeuroRehabilitation 33(2):195–200. doi:10.3233/NRE-130945

    PubMed  Google Scholar 

  9. Lee KC, Finley R, Miller B (2004) Apraxia of lid opening: dose-dependent response to carbidopa–levodopa. Pharmacotherapy 24(3):401–403

    Article  PubMed  Google Scholar 

  10. Yamada S, Matsuo K, Hirayama M, Sobue G (2004) The effects of levodopa on apraxia of lid opening: a case report. Neurology 62(5):830–831

    Article  CAS  PubMed  Google Scholar 

  11. Mori S, Crain BJ, Chacko VP, van Zijl PC (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45(2):265–269

    Article  CAS  PubMed  Google Scholar 

  12. Kunimatsu A, Aoki S, Masutani Y, Abe O, Hayashi N, Mori H, Masumoto T, Ohtomo K (2004) The optimal trackability threshold of fractional anisotropy for diffusion tensor tractography of the corticospinal tract. Magn Reson Med Sci 3(1):11–17

    Article  PubMed  Google Scholar 

  13. Newton JM, Ward NS, Parker GJ, Deichmann R, Alexander DC, Friston KJ, Frackowiak RS (2006) Non-invasive mapping of corticofugal fibres from multiple motor areas—relevance to stroke recovery. Brain 129(Pt 7):1844–1858. doi:10.1093/brain/awl106

    Article  PubMed  PubMed Central  Google Scholar 

  14. Seo JP, Jang SH (2013) Different characteristics of the corticospinal tract according to the cerebral origin: DTI study. AJNR Am J Neuroradiol 34(7):1359–1363. doi:10.3174/ajnr.A3389

    Article  CAS  PubMed  Google Scholar 

  15. Jang SH (2014) The corticospinal tract from the viewpoint of brain rehabilitation. J Rehabil Med 46(3):193–199. doi:10.2340/16501977-1782

    Article  PubMed  Google Scholar 

  16. Jang SH, Kim K, Kim SH, Son SM, Jang WH, Kwon HG (2014) The relation between motor function of stroke patients and diffusion tensor imaging findings for the corticospinal tract. Neurosci Lett 572C:1–6. doi:10.1016/j.neulet.2014.04.044

    Article  CAS  Google Scholar 

  17. Kwon HG, Yang JH, Park JB, Kim MH, Choi SH, Yang DS (2014) Anatomical location and somatotopic organization of the corticospinal tract in the corona radiata of the normal human brain: a diffusion tensor tractography study. NeuroReport 25(9):710–714. doi:10.1097/WNR.0000000000000170

    Article  PubMed  Google Scholar 

  18. Jang SH, Cho SH, Kim YH, You SH, Kim SH, Kim O, Yang DS, Son S (2005) Motor recovery mechanism of diffuse axonal injury: a combined study of transcranial magnetic stimulation and functional MRI. Restor Neurol Neurosci 23(1):51–56

    PubMed  Google Scholar 

  19. Behrens TE, Johansen-Berg H, Woolrich MW, Smith SM, Wheeler-Kingshott CA, Boulby PA, Barker GJ, Sillery EL, Sheehan K, Ciccarelli O, Thompson AJ, Brady JM, Matthews PM (2003) Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci 6(7):750–757. doi:10.1038/nn1075

    Article  CAS  PubMed  Google Scholar 

  20. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(Suppl 1):S208–S219. doi:10.1016/j.neuroimage.2004.07.051

    Article  PubMed  Google Scholar 

  21. Behrens TE, Berg HJ, Jbabdi S, Rushworth MF, Woolrich MW (2007) Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? Neuroimage 34(1):144–155. doi:10.1016/j.neuroimage.2006.09.018

    Article  CAS  PubMed  Google Scholar 

  22. Jang SH (2011) Somatotopic arrangement and location of the corticospinal tract in the brainstem of the human brain. Yonsei Med J 52(4):553–557. doi:10.3349/ymj.2011.52.4.553

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hansen JT, Koeppen BM, Netter FH, Craig JA, Perkins J (2002) Atlas of Neuroanatomy and Neurophysiology: selections from the Netter Collection of Medical Illustrations. Icon Custom Communication. p 98

  24. Mayka MA, Corcos DM, Leurgans SE, Vaillancourt DE (2006) Three-dimensional locations and boundaries of motor and premotor cortices as defined by functional brain imaging: a meta-analysis. Neuroimage 31(4):1453–1474. doi:10.1016/j.neuroimage.2006.02.004

    Article  PubMed  PubMed Central  Google Scholar 

  25. Assaf Y, Pasternak O (2008) Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J Mol Neurosci 34(1):51–61. doi:10.1007/s12031-007-0029-0

    Article  CAS  PubMed  Google Scholar 

  26. Neil JJ (2008) Diffusion imaging concepts for clinicians. J Magn Reson Imaging 27(1):1–7. doi:10.1002/jmri.21087

    Article  PubMed  Google Scholar 

  27. Liepmann H (1920) Apraxie. Ergebn ges Med 1:516–543

    Google Scholar 

  28. Denes G, Mantovan MC, Gallana A, Cappelletti JY (1998) Limb-kinetic apraxia. Mov Disord 13(3):468–476. doi:10.1002/mds.870130316

    Article  CAS  PubMed  Google Scholar 

  29. Kwon H, Jang SH (2012) Delayed recovery of gait function in a patient with intracerebral haemorrhage. J Rehabil Med 44(4):378–380. doi:10.2340/16501977-0962

    Article  PubMed  Google Scholar 

  30. Borroni B, Garibotto V, Agosti C, Brambati SM, Bellelli G, Gasparotti R, Padovani A, Perani D (2008) White matter changes in corticobasal degeneration syndrome and correlation with limb apraxia. Arch Neurol 65(6):796–801. doi:10.1001/archneur.65.6.796

    Article  PubMed  Google Scholar 

  31. Wedeen VJ, Wang RP, Schmahmann JD, Benner T, Tseng WY, Dai G, Pandya DN, Hagmann P, D’Arceuil H, de Crespigny AJ (2008) Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. Neuroimage 41(4):1267–1277. doi:10.1016/j.neuroimage.2008.03.036

    Article  CAS  PubMed  Google Scholar 

  32. Yamada K, Sakai K, Akazawa K, Yuen S, Nishimura T (2009) MR tractography: a review of its clinical applications. Magn Reson Med Sci 8(4):165–174

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Medical Research Center Program (2015R1A5A2009124) through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong Pyo Seo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Standard

The authors declare that they acted in accordance with ethical standards laid down in the 1964 Declaration of Helsinki.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, S.H., Seo, J.P. Limb-kinetic apraxia due to injury of corticofugal tracts from secondary motor area in patients with corona radiata infarct. Acta Neurol Belg 116, 467–472 (2016). https://doi.org/10.1007/s13760-016-0600-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13760-016-0600-y

Keywords

Navigation