Skip to main content
Log in

The role of P300 event-related potentials in the cognitive recovery after the stroke

  • Original Article
  • Published:
Acta Neurologica Belgica Aims and scope Submit manuscript

Abstract

The aim of this study was to elucidate the effects of an ischemic stroke on the amplitude and latency of the P300 wave and evaluate their changes over a prospective 1-year follow-up period. We recorded the P300 wave using an auditory oddball paradigm in 60 consecutive brain infarct patients at baseline (i.e., within 4 weeks after the stroke), after 3 months, after 12 months and in 30 healthy control subjects. The P300 latencies in stroke patients were significantly longer and the P300 amplitudes were significantly smaller than those of the control group. The latency of P300 showed a highly significant average improvement 12 months after the stroke compared to the baseline. There was no significant change observed for the P300 amplitude during the same period. The P3 latency is initially more increased in the patients with hemispheric brain infarction but shows a better recovery compared to the patients with brainstem infarction. Also, the results of the P300 latency of patients with the left-sided lesions was significantly longer compared to the patients with right-sided lesions on the beginning of the study but not 3 and 12 months after the stroke. The results of our study show the importance of P300 event-related potentials in the detection and follow-up of cognitive changes after ischemic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dombovy ML, Sandok BA, Basford JA (1986) Rehabilitation after stroke: a review. Stroke 17:363–369

    Article  CAS  PubMed  Google Scholar 

  2. Zinn S, Dudley TK, Bosworth HB, Hoenig HM, Duncan PW, Horner RD (2004) The effect of poststroke cognitive impairment on rehabilitation process and functional outcome. Arch Phys Med Rehabil 85:1084–1090

    Article  PubMed  Google Scholar 

  3. Yamaguchi S, Knight RT (1991) P300 generation by novel somatosensory stimuli. Electroencephalogr Clin Neurophysiol 78:50–55

    Article  CAS  PubMed  Google Scholar 

  4. Bennys K, Portet F, Touchon J, Rondouin G (2007) Diagnostic value of event-related evoked potentials N200 and P300 subcomponents in early diagnosis of Alzheimer’s disease and mild cognitive impairment. J Clin Neurophysiol 24:405–412

    Article  PubMed  Google Scholar 

  5. Golob EJ, Irimajiri R, Starr A (2007) Auditory cortical activity in amnestic mild cognitive impairment: relationship to subtype and conversion to dementia. Brain 130:740–752

    Article  PubMed  Google Scholar 

  6. Frodl T, Hampel H, Juckel G, Bürger K, Padberg F, Engel RR, Möller HJ, Hegerl U (2002) Value of event-related P300 subcomponents in the clinical diagnosis of mild cognitive impairment and Alzheimer’s disease. Psychophysiology 39(2):175–181

    Article  PubMed  Google Scholar 

  7. Golob EJ, Johnson JK, Starr A (2002) Auditory event-related potentials during target detection are abnormal in mild cognitive impairment. Clin Neurophysiol 113:151–161

    Article  PubMed  Google Scholar 

  8. Irimajiri R, Golob EJ, Starr A (2005) Auditory brain-stem, middle- and long-latency evoked potentials in mild cognitive impairment. Clin Neurophysiol 116:1918–1929

    Article  CAS  PubMed  Google Scholar 

  9. Polich J (1999) P300 in clinical applications. In: Niedermayer E, de la Silva L, Urban F (eds) Electroencephalography: basic principles, clinical applications and related fields. Schwartzenberger, Baltimore-Munich, pp 1073–1091

    Google Scholar 

  10. Friedman D, Johnson R (2000) Event-related potential (ERP) studies of memory encoding and retrieval: a selective review. Microsc Res Tech 51:6–28

    Article  CAS  PubMed  Google Scholar 

  11. Braverman ER, Blum K (2003) P300 (latency) event-related potential: an accurate predictor of memory impairment. Clin Electroencephalogr 34:124–139

    PubMed  Google Scholar 

  12. Patel SH, Azzam PN (2005) Characterization of N200 and P300: selected studies of the event-related potential. Int J Med Sci 2:147–154

    Article  PubMed Central  PubMed  Google Scholar 

  13. Polich J, Herbst KL (2000) P300 as a clinical assay: rationale, evaluation, and findings. Int J Psychophysiol 38:3–19

    Article  CAS  PubMed  Google Scholar 

  14. Polich J (2007) Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol 118(10):2128–2148

    Article  PubMed Central  PubMed  Google Scholar 

  15. Portin R, Kovala T, Polo-Kantola P, Revonsuo A, Muller K, Matikainen E (2000) Does P3 reflect attentional or memory performances, or cognition more generally? Scand J Psychol 41:31–40

    Article  CAS  PubMed  Google Scholar 

  16. Picton TW (1992) The P300 wave of the human event-related potential. J Clin Neurophysiol 9(4):456–479

    Article  CAS  PubMed  Google Scholar 

  17. Polich J (1998) P300 clinical utility and control of variability. J Clin Neurophysiol 15:14–33

    Article  CAS  PubMed  Google Scholar 

  18. Goodin D, Squires K, Starr A (1978) Long latency event-related components of the auditory evoked potential in dementia. Brain 101:635–648

    Article  CAS  PubMed  Google Scholar 

  19. Goodin D, Aminoff M (1986) Electrophysiological differences between subtypes of dementia. Brain 109:1103–1113

    Article  PubMed  Google Scholar 

  20. Goodin D, Aminoff M (1987) Electrophysiological differences between demented and nondemented patients with Parkinson’s disease. Ann Neurol 21:90–94

    Article  CAS  PubMed  Google Scholar 

  21. Neshige R, Barrett G, Shibasaki H (1988) Auditory long latency event-related potentials in Alzheimer’s disease and multi-infarct dementia. J Neurol Neurosurg Psychiatry 51:1120–1125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Ito J (1994) Somatosensory event-related potentials (ERPs) in patients with different types of dementia. J Neurol Sci 121:139–146

    Article  CAS  PubMed  Google Scholar 

  23. Blackwood DH, St Clair DM, Muir WJ, Duffy JC (1991) Auditory P300 and eye tracking dysfunction in schizophrenic pedigrees. Arch Gen Psychiatry 48:899–909

    Article  CAS  PubMed  Google Scholar 

  24. Weir N, Fiaschi K, Machin D (1998) The distribution and latency of the auditory P300 in schizophrenia and depression. Schizophr Res 31:151–158

    Article  CAS  PubMed  Google Scholar 

  25. Karaaslan F, Gonul AS, Oguz A, Erdinc E, Esel E (2003) P300 changes in major depressive disorders with and without psychotic features. J Affect Disord 73:283–287

    Article  PubMed  Google Scholar 

  26. Vandoolaeghe E, van Hunsel F, Nuyten D, Maes M (1998) Auditory event-related potentialsin major depression: prolonged P300 latency and increased P200 amplitude. J Affect Disord 48:105–113

    Article  CAS  PubMed  Google Scholar 

  27. Hansch EC, Syndulko K, Cohen SN, Goldberg ZI, Potvin AR, Tourtellotte WW (1982) Cognition in Parkinson disease: an event-related potential perspective. Ann Neurol 11:599–607

    Article  CAS  PubMed  Google Scholar 

  28. Tachibana H, Toda K, Sugita M (1992) Actively and passively evoked P3 latency of event-related potentials in Parkinson’s disease. J Neurol Sci 111(2):134–142

    Article  CAS  PubMed  Google Scholar 

  29. Polich J, Romine JS, Sipe JC, Aung M, Dalessio DJ (1992) P300 in multiple sclerosis: a preliminary report. Int J Psychophysiol 12:155–163

    Article  CAS  PubMed  Google Scholar 

  30. Honig LS, Ramsay RE, Sheremata WA (1992) Event-related potential P300 in multiple sclerosis. Relation to magnetic resonance imaging and cognitive impairment. Arch Neurol 49:44–50

    Article  CAS  PubMed  Google Scholar 

  31. Ellger T, Bethke F, Frese A, Lüttmann RJ, Buchheister A, Ringelstein EB, Evers S (2002) Event related potentials in different subtypes of multiple sclerosis—a cross-sectional study. J Neurol Sci 205:35–40

    Article  PubMed  Google Scholar 

  32. Piras MR, Magnano I, Canu EDG, Paulus KS, Satta WM, Soddu A, Conti M, Achene A, Solinas G, Aiello I (2003) Longitudinal study of cognitive dysfunction in multiple sclerosis: neuropsychological, neuroradiological, and neurophysiological findings. J Neurol Neurosurg Psychiatry 74:878–885

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Trinka E, Unterrainer J, Staffen W, Löscher NW, Ladurner G (2000) Delayed visual P3 in unilateral thalamic stroke. Eur J Neurol 7:517–522

    Article  CAS  PubMed  Google Scholar 

  34. Onofrj M, Curatola L, Malatesta G, Colamartino P, Bazzano S, Fulgente T, Ferracci F (1992) Delayed P3 event-related potentials (ERPs) in thalamic hemorrhage. Electroencephalogr Clin Neurophysiol 83:52–61

    Article  CAS  PubMed  Google Scholar 

  35. Korpelainen JT, Kauhanen ML, Tolonen U, Brusin E, Mononen H, Hiltunen P, Sotaniemi KA, Suominen K, MyllylaÈ VV (2000) Auditory P300 event related potential in minor ischemic stroke. Acta Neurol Scand 101:202–208

    Article  CAS  PubMed  Google Scholar 

  36. Tachibana H, Toda K, Sugita M (1992) Event-related potentials in patients with multiple lacunar infarcts. Gerontology 38:322–329

    Article  CAS  PubMed  Google Scholar 

  37. Gummow LJ, Dustman RE, Keaney RP (1986) Cerebrovascular accident alters P300 event-related potential characteristics. Electroencephalogr Clin Neurophysiol 63:128–137

    Article  CAS  PubMed  Google Scholar 

  38. Onofrj M, Thomas A, Paci C, Scesi M, Tombari R (1997) Event related potentials recorded in patients with locked-in syndrome. J Neurol Neurosurg Psychiatry 63:759–764

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Goodin D, Desmedt J, Maurer K, Nuwer MR (1994) IFCN recommended standards for longlatency auditory event-related potentials. Report of an IFCN committee. International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol 91(1):18–20

    Article  CAS  PubMed  Google Scholar 

  40. R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Version 3.1.0. http://www.R-project.org/. Accessed 4 oct 2014

  41. Tatemichi TK, Desmond DW, Stern Y, Paik M, Bagiella E (1994) Cognitive impairment after stroke: frequency, patterns, and relationship to functional abilities. J Neurol Neurosurg Psychiatry 57:202–207

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Ballard C, Rowan E, Stephens S, Kalaria R, Kenny RA (2003) Prospective follow-up study between 3 and 15 months after stroke: improvements and decline in cognitive function among dementia-free stroke survivors >75 years of age. Stroke 34(10):2440–2444

    Article  PubMed  Google Scholar 

  43. Oksala NK, Jokinen H, Melkas S, Oksala A, Pohjasvaara T, Hietanen M, Vataja R, Kaste M, Karhunen PJ, Erkinjuntti T (2009) Cognitive impairment predicts poststroke death in long-term follow-up. J Neurol Neurosurg Psychiatry 80(11):1230–1235

    Article  CAS  PubMed  Google Scholar 

  44. Ladurner G, Schimke H, Wranek U, Klimesch W (1992) The value of P300 in the diagnosis of cognitive impairment in stroke. Arch Gerontol Geriatr 10(1):1–8

    Article  Google Scholar 

  45. Iragui V, Kutas M, Salmon DP (1996) Event related potentials during semantic categorization in normal aging and senile dementia of the Alzheimer’s type. Electroencephalogr Clin Neurophysiol 100(5):392–406

    CAS  PubMed  Google Scholar 

  46. Yamaguchi S, Tsuchiya H, Yamagata S, Toyoda G, Kobayashi S (2000) Event-related brain potentials in response to novel sounds in dementia. Clin Neurophysiol 111(2):195–203

    Article  CAS  PubMed  Google Scholar 

  47. Sunderland A, Tinson D, Bradley L (1994) Differences in recovery fromconstructional apraxia after right and left hemisphere stroke? Clin Exp Neuropsychol 16:916–920

    Article  CAS  Google Scholar 

  48. Robertson IH, Ridgeway V, Greenfield E, Parr A (1997) Motor recovery after stroke depends on intact sustained attention: a 2-year follow-up study. Neuropsychology 11:290–295

    Article  CAS  PubMed  Google Scholar 

  49. Desmond DW, Moroney JT, Sano M, Stern Y (1996) Recovery of cognitive function after stroke. Stroke 27:1798–1803

    Article  CAS  PubMed  Google Scholar 

  50. Siekierka-Kleiser EM, Kleiser R, Wohlschläger AM, Freund HJ, Seitz RJ (2006) Quantitative assessment of recovery from motor hemineglect in acute stroke patients. Cerebrovasc Dis 21:307–314

    Article  CAS  PubMed  Google Scholar 

  51. O’Brien JT, Erkinjuntti T, Reisberg B, Roman G, Sawada T, Pantoni L, Bowler JV, Ballard C, DeCarli C, Gorelick PB, Rockwood K, Burns A, Gauthier S, DeKosky ST (2003) Vascular cognitive impairment. Lancet Neurol 2(2):89–98

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirjana Dejanović.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dejanović, M., Ivetić, V., Nestorović, V. et al. The role of P300 event-related potentials in the cognitive recovery after the stroke. Acta Neurol Belg 115, 589–595 (2015). https://doi.org/10.1007/s13760-015-0428-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13760-015-0428-x

Keywords

Navigation