Abstract
Among all the metal oxide nanoparticles, CuO and ZnO nanomaterials are very popular and showcase the tremendous properties. They can be prepared from various physical, mechanical, biological, and chemical methods. But, a biological method like the green synthesis of metal oxide nanoparticle by plant or flower extract has become more popular due to its simplicity, low cost, feasibility, and eco-friendly impact. In the present paper, we have prepared both CuO and ZnO nanoparticles by Crocus Sativus (Saffron) flower extract followed by calcination at 400 °C for 15 min. The prepared metal oxide nanoparticles were characterized by UV–visible spectroscopy to study the bandgap energy, and the value was found to be 3.52 eV for CuO and 3.4 eV for ZnO nanoparticles, respectively. The morphology of the prepared metal oxide nanoparticles was studied by scanning electron microscopy, and phase, strain, and crystallite size were investigated by using X-ray diffraction. The investigation of the thermal properties of the CuO and ZnO nanoparticles was performed by thermogravimetric and differential thermal analysis. We determined the percentage weight loss, enthalpy change, and activation energy at 6, 8, and 10 °C/min heating rates. The activation energy of CuO and ZnO nanoparticles was calculated by the Kissinger method and was found to be 13.34 and 8.86 kJ/moles, respectively. The particle size of CuO and ZnO nanoparticles was found to be 300 and 450 nm, respectively. The Fourier-transform infrared spectroscopy was performed to study the functional groups present in both the nanoparticles.











Similar content being viewed by others
Abbreviations
- SEM:
-
Scanning electron microscopy
- XRD:
-
X-ray diffraction
- TG:
-
Thermogravimetry
- DTA:
-
Differential thermal analysis
- FTIR:
-
Fourier-transform infrared spectroscopy
- FWHM:
-
Full-width half maximum
- N–R function:
-
Nelson–Riley function
- EDS:
-
Energy-dispersive spectroscopy
References
J.G. Manjunatha, M. Deraman, N.H. Basri, I.A. Talib, Arab. J. Chem. 11, 149 (2018)
R. Shashanka, J. Mater. Environ. Sci. 10, 767 (2019)
J.G. Manjunatha, M. Deraman, N.H. Basri, N.S.M. Nor, I.A. Talib, N. Ataollahi, C. R. Chim. 17, 465 (2014)
S. Reddy, B.E.K. Swamy, S. Aruna, M. Kumar, R. Shashanka, H. Jayadevappa, Chem. Sens. 2, 1 (2012)
R. Shashanka, D. Chaira, B.E. Kumara Swamy, Int. J. Electrochem. Sci. 10, 5586 (2015)
G. Tigari, J.G. Manjunatha, C. Raril, N. Hareesha, Chem. Select. 4, 2168 (2019)
N. Hareesha, J.G. Manjunatha, C. Raril, G. Tigari, Chem. Select. 4, 4559 (2019)
J.G. Manjunatha, B.E.K. Swamy, M. Deraman, G.P. Mamatha, Der Pharma Chemica. 4, 2489 (2012)
R. Shashanka, H. Esgin, V.M. Yilmaz, Y. Caglar, J. Sci. Adv. Mater. Dev. (2020) http://sci-hub.tw/10.1016/j.jsamd.2020.04.005
J.G. Manjunatha, B.E.K. Swamy, M. Deraman, G.P. Mamatha, Int. J. Pharm. Pharm. Sci. 5, 355 (2013)
J.G. Manjunatha, B.E.K. Swamy, M.T. Shreenivas, G.P. Mamatha, Anal. Bioanal. Electrochem. 4, 225 (2012)
S. Gupta, R. Shashanka, D. Chaira, IOP Conf. Ser.: Mater. Sci. Eng. 75, 012033 (2015)
A.K. Nayak, R. Shashanka, D. Chaira, IOP Conf. Ser.: Mater. Sci. Eng. 115, 012008 (2016)
R. Shashanka, Int. J. Sci. Eng. Res. 8, 588 (2017)
J.G. Manjunatha, Asian J Pharm. Clin Res. 10, 295 (2017)
M.F. Garcia, J.A. Rodriguez, Metal Oxide Nanoparticles, Encyclopedia of Inorganic Chemistry (Wiley, New York, 2009)
United States Department of Agriculture (USDA), Agricultural Research Service, National Plant Germplasm System. Germplasm Resources Information Network (GRIN-Taxonomy). National Germplasm Resources Laboratory, Beltsville, Maryland (2020) https://npgsweb.ars-grin.gov/gringlobal/taxonomydetail.aspx?id=12265
M. Kafi, A. Koocheki, M.H. Rashed, M. Nassiri, Saffron (Crocus sativus) production and processing, 1st edn. (Science Publishers, Singapore, 2006)
Saffron, MedicineNet, https://www.medicinenet.com/saffron/supplements-vitamins.htm
AZoNano, Copper Oxide (CuO) Nanoparticles-Properties, Applications, 9th May (2013). https://www.azonano.com/article.aspx?ArticleID=3395
R. Shashanka, Y. Kamacı, R. Taş, Y. Ceylan, A.S. Bülbül, O. Uzun, A.C. Karaoglanli, Phys. Chem. Res. 7, 799 (2019)
J. Sarkar, N. Chakraborty, A. Chatterjee, A. Bhattacharjee, D. Dasgupta, K. Acharya, Nanomaterials. 10, 312 (2020)
R. Chowdhury, A. Khan, M.H. Rashid, RSC Adv. 10, 14374 (2020)
H. Siddiqui, M.S. Qureshi, F.Z. Haque, Nano-Micro Lett. 12, 29 (2020)
Y.A. Selim, M.A. Azb, I. Ragab, M.H.M. Abd El-Azim, Sci. Rep. 10, 3445 (2020)
P. Jamdagni, P. Khatri, J.S. Rana, J. King Saud Univ. Sci. 30, 168 (2018)
R. Dobrucka, J. Dugaszewska, Saudi J. Biol. Sci. 23, 517 (2016)
R. Shashanka, D. Chaira, Powder Technol. 259, 125 (2014)
R. Shashanka, B.E.K. Swamy, Phys. Chem. Res. 8, 1 (2020)
R. Shashanka, K.B. Ceylan, Biointerface Res. Appl. Chem. 10, 5951 (2020)
R. Shashanka, V.M. Yilmaz, A.C. Karaoglanli, O. Uzun, Mor. J. Chem. 8, 497 (2020)
R. Shashanka, D. Chaira, Powder Technol. 278, 35 (2015)
E. Karimi, E. Oskoueian, R. Hendra, H.Z.E. Jaafar, Molecules 15, 6244 (2010)
Y. Aparna, K.V. Rao, P.S. Subbarao, J. Nano Electron. Phys. 4, 03005 (2012)
N.R. Dhineshbabu, V. Rajendran, N. Nithyavathy, R. Vetumperumal, Appl. Nanosci. 6, 933 (2016)
J. Essic, R. Mather, Am. J. Phys. 61, 646 (1993)
L. Xin-Hua, X. Jia-Yue, J. Min, S. Hui, L. Xiao-Min, Chin. Phys. Lett. 23, 3356 (2006)
M.K. Debanath, S. Karmakar, Mater. Lett. 111, 116 (2013)
J. Singha, S. Kaura, G. Kaur, S. Basu, M. Rawat, Green Process Synth. 8, 272 (2019)
D. Dodoo-Arhin, M. Leoni, P. Scardi, Mol. Cryst. Liq. Cryst. 555, 17 (2012)
H. Wang, J.Z. Xu, J.J. Zhu, H.Y. Chen, J. Cryst. Growth. 244, 88 (2002)
J. Yang, F.C. Meldrum, J.H. Fendler, J. Phys. Chem. 99, 5500 (1995)
M. Nasrollahzadeh, M. Atarod, S.M. Sajadi, Appl. Surf. Sci. 364, 636 (2016)
A.K. Arora, S. Devi, V.S. Jaswal, J. Singh, M. Kinger, V.D. Gupta, Orient. J. Chem. 30, 1671 (2014)
F. Yi, J.B. DeLisio, N. Nguyen, M.R. Zachariah, D.A. LaVan, Chem. Phys. Lett. 689, 26 (2017)
T. Chrostek, The influence of the heating and cooling rates on the temperature of the phase transitions, Chapter 6, (Oficyna Wydawnicza Stowarzyszenia Menedżerów Jakości i Produkcji. 2016), p. 87
Z.-J. Wang, W. Ni, Y. Jia, L.-P. Zhu, X.-Y. Huang, J. Non-Cryst. Solids 356, 1554 (2010)
H.E. Kissinger, J Res Natl Bur Stand. 57, 217 (1956)
M. Halder, M.D.M. Islam, Z. Ansari, S. Ahammed, K. Sen, S.K.M. Islam, ACS Sustain. Chem. Eng. 5, 648 (2017)
S. Sundar, G. Venkatachalam, S.J. Kwon, Nanomaterials 8, 823 (2018)
S. Saif, A. Tahir, T. Asim, Y. Chen, Nanomaterials 6, 205 (2016)
M. Mishra, J.S. Paliwal, S.K. Singh, E. Selvarajan, C. Subathradevi, V. Mohanasrinivasan, J Pure Appl Microbiol. 7, 1 (2013)
A. Venkateasan, R. Prabakaran, V. Sujatha, Nanotechnol Environ. Eng. 2, 8 (2017)
N. Jayarambabu, B.S. Kumari, Int. J. Multidiscipl. Adv. Res. Trends. 2, 273 (2015)
Acknowledgements
The authors gratefully acknowledge Bartin University Scientific Research Projects Unit, Turkey, for providing financial support to conduct the research (Project No. 2019-FEN-A-006).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that there are no conflicts of interest.
Rights and permissions
About this article
Cite this article
Shashanka, R. Investigation of optical and thermal properties of CuO and ZnO nanoparticles prepared by Crocus Sativus (Saffron) flower extract. J IRAN CHEM SOC 18, 415–427 (2021). https://doi.org/10.1007/s13738-020-02037-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13738-020-02037-3