Skip to main content

Advertisement

Log in

Investigation of optical and thermal properties of CuO and ZnO nanoparticles prepared by Crocus Sativus (Saffron) flower extract

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Among all the metal oxide nanoparticles, CuO and ZnO nanomaterials are very popular and showcase the tremendous properties. They can be prepared from various physical, mechanical, biological, and chemical methods. But, a biological method like the green synthesis of metal oxide nanoparticle by plant or flower extract has become more popular due to its simplicity, low cost, feasibility, and eco-friendly impact. In the present paper, we have prepared both CuO and ZnO nanoparticles by Crocus Sativus (Saffron) flower extract followed by calcination at 400 °C for 15 min. The prepared metal oxide nanoparticles were characterized by UV–visible spectroscopy to study the bandgap energy, and the value was found to be 3.52 eV for CuO and 3.4 eV for ZnO nanoparticles, respectively. The morphology of the prepared metal oxide nanoparticles was studied by scanning electron microscopy, and phase, strain, and crystallite size were investigated by using X-ray diffraction. The investigation of the thermal properties of the CuO and ZnO nanoparticles was performed by thermogravimetric and differential thermal analysis. We determined the percentage weight loss, enthalpy change, and activation energy at 6, 8, and 10 °C/min heating rates. The activation energy of CuO and ZnO nanoparticles was calculated by the Kissinger method and was found to be 13.34 and 8.86 kJ/moles, respectively. The particle size of CuO and ZnO nanoparticles was found to be 300 and 450 nm, respectively. The Fourier-transform infrared spectroscopy was performed to study the functional groups present in both the nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

SEM:

Scanning electron microscopy

XRD:

X-ray diffraction

TG:

Thermogravimetry

DTA:

Differential thermal analysis

FTIR:

Fourier-transform infrared spectroscopy

FWHM:

Full-width half maximum

N–R function:

Nelson–Riley function

EDS:

Energy-dispersive spectroscopy

References

  1. J.G. Manjunatha, M. Deraman, N.H. Basri, I.A. Talib, Arab. J. Chem. 11, 149 (2018)

    CAS  Google Scholar 

  2. R. Shashanka, J. Mater. Environ. Sci. 10, 767 (2019)

    CAS  Google Scholar 

  3. J.G. Manjunatha, M. Deraman, N.H. Basri, N.S.M. Nor, I.A. Talib, N. Ataollahi, C. R. Chim. 17, 465 (2014)

    CAS  Google Scholar 

  4. S. Reddy, B.E.K. Swamy, S. Aruna, M. Kumar, R. Shashanka, H. Jayadevappa, Chem. Sens. 2, 1 (2012)

    Google Scholar 

  5. R. Shashanka, D. Chaira, B.E. Kumara Swamy, Int. J. Electrochem. Sci. 10, 5586 (2015)

    CAS  Google Scholar 

  6. G. Tigari, J.G. Manjunatha, C. Raril, N. Hareesha, Chem. Select. 4, 2168 (2019)

    CAS  Google Scholar 

  7. N. Hareesha, J.G. Manjunatha, C. Raril, G. Tigari, Chem. Select. 4, 4559 (2019)

    CAS  Google Scholar 

  8. J.G. Manjunatha, B.E.K. Swamy, M. Deraman, G.P. Mamatha, Der Pharma Chemica. 4, 2489 (2012)

    CAS  Google Scholar 

  9. R. Shashanka, H. Esgin, V.M. Yilmaz, Y. Caglar, J. Sci. Adv. Mater. Dev. (2020) http://sci-hub.tw/10.1016/j.jsamd.2020.04.005

  10. J.G. Manjunatha, B.E.K. Swamy, M. Deraman, G.P. Mamatha, Int. J. Pharm. Pharm. Sci. 5, 355 (2013)

    CAS  Google Scholar 

  11. J.G. Manjunatha, B.E.K. Swamy, M.T. Shreenivas, G.P. Mamatha, Anal. Bioanal. Electrochem. 4, 225 (2012)

    Google Scholar 

  12. S. Gupta, R. Shashanka, D. Chaira, IOP Conf. Ser.: Mater. Sci. Eng. 75, 012033 (2015)

    Google Scholar 

  13. A.K. Nayak, R. Shashanka, D. Chaira, IOP Conf. Ser.: Mater. Sci. Eng. 115, 012008 (2016)

    Google Scholar 

  14. R. Shashanka, Int. J. Sci. Eng. Res. 8, 588 (2017)

    Google Scholar 

  15. J.G. Manjunatha, Asian J Pharm. Clin Res. 10, 295 (2017)

    CAS  Google Scholar 

  16. M.F. Garcia, J.A. Rodriguez, Metal Oxide Nanoparticles, Encyclopedia of Inorganic Chemistry (Wiley, New York, 2009)

    Google Scholar 

  17. United States Department of Agriculture (USDA), Agricultural Research Service, National Plant Germplasm System. Germplasm Resources Information Network (GRIN-Taxonomy). National Germplasm Resources Laboratory, Beltsville, Maryland (2020) https://npgsweb.ars-grin.gov/gringlobal/taxonomydetail.aspx?id=12265

  18. M. Kafi, A. Koocheki, M.H. Rashed, M. Nassiri, Saffron (Crocus sativus) production and processing, 1st edn. (Science Publishers, Singapore, 2006)

    Google Scholar 

  19. Saffron, MedicineNet, https://www.medicinenet.com/saffron/supplements-vitamins.htm

  20. AZoNano, Copper Oxide (CuO) Nanoparticles-Properties, Applications, 9th May (2013). https://www.azonano.com/article.aspx?ArticleID=3395

  21. R. Shashanka, Y. Kamacı, R. Taş, Y. Ceylan, A.S. Bülbül, O. Uzun, A.C. Karaoglanli, Phys. Chem. Res. 7, 799 (2019)

    CAS  Google Scholar 

  22. J. Sarkar, N. Chakraborty, A. Chatterjee, A. Bhattacharjee, D. Dasgupta, K. Acharya, Nanomaterials. 10, 312 (2020)

    CAS  PubMed Central  Google Scholar 

  23. R. Chowdhury, A. Khan, M.H. Rashid, RSC Adv. 10, 14374 (2020)

    CAS  Google Scholar 

  24. H. Siddiqui, M.S. Qureshi, F.Z. Haque, Nano-Micro Lett. 12, 29 (2020)

    CAS  Google Scholar 

  25. Y.A. Selim, M.A. Azb, I. Ragab, M.H.M. Abd El-Azim, Sci. Rep. 10, 3445 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  26. P. Jamdagni, P. Khatri, J.S. Rana, J. King Saud Univ. Sci. 30, 168 (2018)

    Google Scholar 

  27. R. Dobrucka, J. Dugaszewska, Saudi J. Biol. Sci. 23, 517 (2016)

    CAS  PubMed  Google Scholar 

  28. R. Shashanka, D. Chaira, Powder Technol. 259, 125 (2014)

    CAS  Google Scholar 

  29. R. Shashanka, B.E.K. Swamy, Phys. Chem. Res. 8, 1 (2020)

    Google Scholar 

  30. R. Shashanka, K.B. Ceylan, Biointerface Res. Appl. Chem. 10, 5951 (2020)

    Google Scholar 

  31. R. Shashanka, V.M. Yilmaz, A.C. Karaoglanli, O. Uzun, Mor. J. Chem. 8, 497 (2020)

    CAS  Google Scholar 

  32. R. Shashanka, D. Chaira, Powder Technol. 278, 35 (2015)

    CAS  Google Scholar 

  33. E. Karimi, E. Oskoueian, R. Hendra, H.Z.E. Jaafar, Molecules 15, 6244 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Y. Aparna, K.V. Rao, P.S. Subbarao, J. Nano Electron. Phys. 4, 03005 (2012)

    Google Scholar 

  35. N.R. Dhineshbabu, V. Rajendran, N. Nithyavathy, R. Vetumperumal, Appl. Nanosci. 6, 933 (2016)

    CAS  Google Scholar 

  36. J. Essic, R. Mather, Am. J. Phys. 61, 646 (1993)

    Google Scholar 

  37. L. Xin-Hua, X. Jia-Yue, J. Min, S. Hui, L. Xiao-Min, Chin. Phys. Lett. 23, 3356 (2006)

    Google Scholar 

  38. M.K. Debanath, S. Karmakar, Mater. Lett. 111, 116 (2013)

    CAS  Google Scholar 

  39. J. Singha, S. Kaura, G. Kaur, S. Basu, M. Rawat, Green Process Synth. 8, 272 (2019)

    Google Scholar 

  40. D. Dodoo-Arhin, M. Leoni, P. Scardi, Mol. Cryst. Liq. Cryst. 555, 17 (2012)

    CAS  Google Scholar 

  41. H. Wang, J.Z. Xu, J.J. Zhu, H.Y. Chen, J. Cryst. Growth. 244, 88 (2002)

    CAS  Google Scholar 

  42. J. Yang, F.C. Meldrum, J.H. Fendler, J. Phys. Chem. 99, 5500 (1995)

    CAS  Google Scholar 

  43. M. Nasrollahzadeh, M. Atarod, S.M. Sajadi, Appl. Surf. Sci. 364, 636 (2016)

    CAS  Google Scholar 

  44. A.K. Arora, S. Devi, V.S. Jaswal, J. Singh, M. Kinger, V.D. Gupta, Orient. J. Chem. 30, 1671 (2014)

    CAS  Google Scholar 

  45. F. Yi, J.B. DeLisio, N. Nguyen, M.R. Zachariah, D.A. LaVan, Chem. Phys. Lett. 689, 26 (2017)

    CAS  Google Scholar 

  46. T. Chrostek, The influence of the heating and cooling rates on the temperature of the phase transitions, Chapter 6, (Oficyna Wydawnicza Stowarzyszenia Menedżerów Jakości i Produkcji. 2016), p. 87

  47. Z.-J. Wang, W. Ni, Y. Jia, L.-P. Zhu, X.-Y. Huang, J. Non-Cryst. Solids 356, 1554 (2010)

    CAS  Google Scholar 

  48. H.E. Kissinger, J Res Natl Bur Stand. 57, 217 (1956)

    CAS  Google Scholar 

  49. M. Halder, M.D.M. Islam, Z. Ansari, S. Ahammed, K. Sen, S.K.M. Islam, ACS Sustain. Chem. Eng. 5, 648 (2017)

    CAS  Google Scholar 

  50. S. Sundar, G. Venkatachalam, S.J. Kwon, Nanomaterials 8, 823 (2018)

    PubMed Central  Google Scholar 

  51. S. Saif, A. Tahir, T. Asim, Y. Chen, Nanomaterials 6, 205 (2016)

    PubMed Central  Google Scholar 

  52. M. Mishra, J.S. Paliwal, S.K. Singh, E. Selvarajan, C. Subathradevi, V. Mohanasrinivasan, J Pure Appl Microbiol. 7, 1 (2013)

    CAS  Google Scholar 

  53. A. Venkateasan, R. Prabakaran, V. Sujatha, Nanotechnol Environ. Eng. 2, 8 (2017)

    Google Scholar 

  54. N. Jayarambabu, B.S. Kumari, Int. J. Multidiscipl. Adv. Res. Trends. 2, 273 (2015)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Bartin University Scientific Research Projects Unit, Turkey, for providing financial support to conduct the research (Project No. 2019-FEN-A-006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Shashanka.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shashanka, R. Investigation of optical and thermal properties of CuO and ZnO nanoparticles prepared by Crocus Sativus (Saffron) flower extract. J IRAN CHEM SOC 18, 415–427 (2021). https://doi.org/10.1007/s13738-020-02037-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-020-02037-3

Keywords