Skip to main content

Advertisement

Log in

Detection/quantification of amyloid aggregation in solution using the novel fluorescent benzofuranone-derivative compounds as amyloid fluorescent probes: synthesis and in vitro characterization

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Neurodegenerative diseases are characterized by the presence of amyloid deposition. Thioflavin T (ThT) has been one of the molecules of choice to attempt the detection of the amyloid deposits, but ThT is unable to cross blood–brain barrier, due to its low lipophilicity. Therefore, there is strong motivation to design and develop new compounds for in vitro fibril detection as well as for in vivo amyloid imaging. Additionally, the importance and critical role of oxidative stress in the onset/progression of some neurodegenerative disorders, and therefore, the efficacy of aurone compounds in inhibiting the resulting toxicity have been frequently reported. In this study, we report the synthesis of some benzofuranone compounds and examine their antioxidant inhibitory property. Furthermore, to establish the potential detection of synthesized compounds to amyloid aggregates, their in vitro binding to some non-disease related amyloidogenic proteins were characterized. Analyses of the in vitro binding studies showed that compounds 3 and 4 bind to the fibril structures successfully while compounds 1, 2 and 5 indicated a low affinity binding to amyloid. Additionally, compounds 3 and 4 exhibited very good antioxidant properties. Furthermore, these compounds have a great potential as fluorescent probes for detecting amyloid aggregation for further investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

MS:

Mass spectrometry

ROS:

Reactive oxygen species

ThT:

Thioflavin T

TEM:

Transmission electron microscopy

AFM:

Atomic force microscopy

PMSF:

Phenyl methyl sulphonyl fluoride

DMSO:

Dimethyl sulphoxide

TFE:

2,2,2-Trifluoroethanol

TMB:

3,3′,5,5′-Tetramethylbenzidine

TMS:

Tetramethylsilane

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

β-Lg:

β-Lactoglobulin

BSA:

Bovine serum albumin

DPPH:

2,2-Diphenyl-1-picrylhydrazyl radical

FRAP:

Ferric reducing antioxidant power

PET:

Positron emission tomography

PCs:

Phenolic compounds

BBB:

Blood brain barrier

CR:

Congo red

References

  1. C.S. Sipe, M.R. Thomas, B.J. Stegmann, B.J. Van Voorhis, Hum. Reprod. 25, 690–696 (2010). https://doi.org/10.1093/humrep/dep442

    Article  CAS  PubMed  Google Scholar 

  2. T.P. Knowles, M. Vendruscolo, C.M. Dobson, Nat. Rev. Mol. Cell Biol. 15, 384–396 (2014). https://doi.org/10.1038/nrm3810

    Article  CAS  PubMed  Google Scholar 

  3. F. Chiti, C.M. Dobson, Annu. Rev. Biochem. 75, 333–366 (2006). https://doi.org/10.1146/annurev.biochem.75.101304.123901

    Article  CAS  PubMed  Google Scholar 

  4. R.B. Maccioni, J.P. Munoz, L. Barbeito, Arch. Med Res. 32, 367–381 (2001)

    Article  CAS  PubMed  Google Scholar 

  5. J.A. Hardy, G.A. Higgins, Science 256, 184–185 (1992)

    Article  CAS  PubMed  Google Scholar 

  6. C. Vigo-Pelfrey, D. Lee, P. Keim, I. Lieberburg, D.B. Schenk, J. Neurochem. 61, 1965–1968 (1993)

    Article  CAS  PubMed  Google Scholar 

  7. D. Morgan, D.M. Diamond, P.E. Gottschall, K.E. Ugen, C. Dickey, J. Hardy, K. Duff, P. Jantzen, G. DiCarlo, D. Wilcock, K. Connor, J. Hatcher, C. Hope, M. Gordon, G.W. Arendash, Nature 408, 982–985 (2000). https://doi.org/10.1038/35050116

    Article  CAS  PubMed  Google Scholar 

  8. C.W. Cotman, E. Head, B.A. Muggenburg, S. Zicker, N.W. Milgram, Neurobiol. Aging 23, 809–818 (2002)

    Article  CAS  PubMed  Google Scholar 

  9. C.D. Smith, J.M. Carney, P.E. Starke-Reed, C.N. Oliver, E.R. Stadtman, R.A. Floyd, W.R. Markesbery, Proc. Natl. Acad. Sci. USA 88, 10540–10543 (1991)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. W.R. Markesbery, Arch. Neurol. 56, 1449–1452 (1999)

    Article  CAS  PubMed  Google Scholar 

  11. D.A. Butterfield, J. Drake, C. Pocernich, A. Castegna, Trends Mol. Med. 7, 548–554 (2001)

    Article  CAS  PubMed  Google Scholar 

  12. C.M. Lauderback, J.M. Hackett, F.F. Huang, J.N. Keller, L.I. Szweda, W.R. Markesbery, D.A. Butterfield, J. Neurochem. 78, 413–416 (2001)

    Article  CAS  PubMed  Google Scholar 

  13. C. Behl, J.B. Davis, R. Lesley, D. Schubert, Cell 77, 817–827 (1994)

    Article  CAS  PubMed  Google Scholar 

  14. M.P. Mattson, Y. Goodman, Brain Res. 676, 219–224 (1995)

    Article  CAS  PubMed  Google Scholar 

  15. T. Pillot, B. Drouet, S. Queille, C. Labeur, J. Vandekerchkhove, M. Rosseneu, M. Pincon-Raymond, J. Chambaz, J. Neurochem. 73, 1626–1634 (1999)

    Article  CAS  PubMed  Google Scholar 

  16. K. Ono, T. Hamaguchi, H. Naiki, M. Yamada, Biochim. Biophys. Acta 1762, 575–586 (2006). https://doi.org/10.1016/j.bbadis.2006.03.002

    Article  CAS  PubMed  Google Scholar 

  17. O.S. Makin, L.C. Serpell, J. Mol. Biol. 335, 1279–1288 (2004)

    Article  CAS  Google Scholar 

  18. S. Freire, M.H. de Araujo, W. Al-Soufi, M. Novo, Dyes Pigm. 110, 97–105 (2014). https://doi.org/10.1016/j.dyepig.2014.05.004

    Article  CAS  Google Scholar 

  19. N. Darghal, A. Garnier-Suillerot, M. Salerno, Biochem. Biophys. Res. Commun. 343, 623–629 (2006)

    Article  CAS  PubMed  Google Scholar 

  20. R. Haudecoeur, A. Ahmed-Belkacem, W. Yi, A. Fortuné, R. Brillet, C. Belle, E. Nicolle, C. Pallier, J.-M. Pawlotsky, A. Boumendjel, J. Med. Chem. 54, 5395–5402 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. M. Siah, M.H. Farzaei, M.R. Ashrafi-Kooshk, H. Adibi, S.S. Arab, M.R. Rashidi, R. Khodarahmi, Bioorg. Chem. 64, 74–84 (2016)

    Article  CAS  PubMed  Google Scholar 

  22. S.A. Ghadami, R. Khodarahmi, S. Ghobadi, M. Ghasemi, S. Pirmoradi, Biophys. Chem. 159, 311–320 (2011). https://doi.org/10.1016/j.bpc.2011.08.004

    Article  CAS  PubMed  Google Scholar 

  23. U.K. Laemmli, Nature 227, 680–685 (1970)

    Article  CAS  PubMed  Google Scholar 

  24. M.M. Bradford, Anal. Biochem. 72, 248–254 (1976)

    Article  CAS  PubMed  Google Scholar 

  25. M. Calamai, F. Chiti, C.M. Dobson, Biophys. J. 89, 4201–4210 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. S.A. Ghadami, Z. Hossein-pour, R. Khodarahmi, S. Ghobadi, H. Adibi, Med. Chem. Res. 22, 115–126 (2013)

    Article  CAS  Google Scholar 

  27. G. Giovannoni, J. Land, G. Keir, E. Thompson, S. Heales, Ann. Clin. Biochem. Int. J. Biochem. Med. 34, 193–198 (1997)

    Article  CAS  Google Scholar 

  28. W. Wang, Int. J. Pharm. 289, 1–30 (2005)

    Article  CAS  PubMed  Google Scholar 

  29. K. Volkova, V. Kovalska, A. Balanda, R. Vermeij, V. Subramaniam, Y.L. Slominskii, S. Yarmoluk, J. Biochem. Biophys. Methods 70, 727–733 (2007)

    Article  CAS  PubMed  Google Scholar 

  30. M. Groenning, M. Norrman, J.M. Flink, M. van de Weert, J.T. Bukrinsky, G. Schluckebier, S. Frokjaer, J. Struct. Biol. 159, 483–497 (2007)

    Article  CAS  PubMed  Google Scholar 

  31. G.M. Morris, D.S. Goodsell, R. Huey, A.J. Olson, J Comput. Aided Mol. Des. 10, 293–304 (1996)

    Article  CAS  PubMed  Google Scholar 

  32. J.J. Esteb, L.M. McNulty, J. Magers, P. Morgan, A.M. Wilson, J. Chem. Educ. 87, 1074–1077 (2010)

    Article  CAS  Google Scholar 

  33. M.D. Hanwell, D.E. Curtis, D.C. Lonie, T. Vandermeersch, E. Zurek, G.R. Hutchison, J. Cheminform. 4, 17 (2012). https://doi.org/10.1186/1758-2946-4-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. G.M. Morris, D.S. Goodsell, R.S. Halliday, R. Huey, W.E. Hart, R.K. Belew, A.J. Olson, J. Comput. Chem. 19, 1639–1662 (1998)

    Article  CAS  Google Scholar 

  35. V. Bondet, W. Brand-Williams, C. Berset, LWT Food Sci. Technol. 30, 609–615 (1997). https://doi.org/10.1006/fstl.1997.0240

    Article  CAS  Google Scholar 

  36. M.S. Blois, Nature 181, 1199–1200 (1958)

    Article  CAS  Google Scholar 

  37. I.F. Benzie, J.J. Strain, Methods Enzymol. 299, 15–27 (1999)

    Article  CAS  PubMed  Google Scholar 

  38. M.G. Savelieff, A.S. DeToma, J.S. Derrick, M.H. Lim, Acc. Chem. Res. 47, 2475–2482 (2014). https://doi.org/10.1021/ar500152x

    Article  CAS  PubMed  Google Scholar 

  39. M. Ono, R. Watanabe, H. Kawashima, T. Kawai, H. Watanabe, M. Haratake, H. Saji, M. Nakayama, Bioorg. Med. Chem. 17, 2069–2076 (2009). https://doi.org/10.1016/j.bmc.2009.01.025

    Article  CAS  PubMed  Google Scholar 

  40. M. Ono, N. Yoshida, K. Ishibashi, M. Haratake, Y. Arano, H. Mori, M. Nakayama, J. Med. Chem. 48, 7253–7260 (2005). https://doi.org/10.1021/jm050635e

    Article  CAS  PubMed  Google Scholar 

  41. M. Hadjeri, C. Beney, A. Boumendjel, Curr. Org. Chem. 7, 679–689 (2003)

    Article  CAS  Google Scholar 

  42. R. Khodarahmi, S.A. Karimi, M.R. Ashrafi Kooshk, S.A. Ghadami, S. Ghobadi, M. Amani, Spectrochim. Acta A Mol. Biomol. Spectrosc. 89, 177–186 (2012). https://doi.org/10.1016/j.saa.2011.12.058

    Article  CAS  PubMed  Google Scholar 

  43. P. Aymard, D. Durand, T. Nicolai, Int. J. Biol. Macromol. 19, 213–221 (1996)

    Article  CAS  PubMed  Google Scholar 

  44. J.M. Jung, G. Savin, M. Pouzot, C. Schmitt, R. Mezzenga, Biomacromolecules 9, 2477–2486 (2008). https://doi.org/10.1021/bm800502j

    Article  CAS  PubMed  Google Scholar 

  45. M.A.M. Hoffmann, P.J.J.M. van Mil, J. Agric. Food Chem. 45, 2942–2948 (1997). https://doi.org/10.1021/jf960789q

    Article  CAS  Google Scholar 

  46. R. Eisert, L. Felau, L.R. Brown, Anal. Biochem. 353, 144–146 (2006). https://doi.org/10.1016/j.ab.2006.03.015

    Article  CAS  PubMed  Google Scholar 

  47. J.S. Kavanaugh, W.F. Moo-Penn, A. Arnone, Biochemistry 32, 2509–2513 (1993)

    Article  CAS  PubMed  Google Scholar 

  48. Y. Maya, M. Ono, H. Watanabe, M. Haratake, H. Saji, M. Nakayama, Bioconj. Chem. 20, 95–101 (2008)

    Article  CAS  Google Scholar 

  49. M. Ono, Y. Maya, M. Haratake, K. Ito, H. Mori, M. Nakayama, Biochem. Biophys. Res. Commun. 361, 116–121 (2007)

    Article  CAS  PubMed  Google Scholar 

  50. R. Khodarahmi, M.R. Ashrafi-Kooshk, Int. J. Biol. Macromol. 100, 18–36 (2017). https://doi.org/10.1016/j.ijbiomac.2016.09.074

    Article  CAS  PubMed  Google Scholar 

  51. G. Kuang, N.A. Murugan, Y. Tu, A. Nordberg, H. Agren, J. Phys. Chem. B. 119, 11560–11567 (2015). https://doi.org/10.1021/acs.jpcb.5b05964

    Article  CAS  PubMed  Google Scholar 

  52. H. Rasouli, M.H. Farzaei, R. Khodarahmi, Int. J. Food Prop. 20, 1700–1741 (2017)

    Article  CAS  Google Scholar 

  53. S.A. Ghadami, F. Bemporad, B.M. Sala, G. Tiana, S. Ricagno, F. Chiti, Cell. Mol. Life Sci. 74, 3577–3598 (2017)

    Article  CAS  PubMed  Google Scholar 

  54. W.J. Huang, X. Zhang, W.W. Chen, Biomed. Rep. 4, 519–522 (2016). https://doi.org/10.3892/br.2016.630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. S. Maghsoudi, M.R. Ashrafi-Kooshk, M. Shahlaei, S.A. Ghadami, S. Ghobadi, A. Mostafaie, R. Khodarahmi, J. Iran. Chem. Soc. 10, 937–950 (2013). https://doi.org/10.1007/s13738-013-0231-7

    Article  CAS  Google Scholar 

  56. A. Jangholi, M.R. Ashrafi-Kooshk, S.S. Arab, S. Karima, M. Poorebrahim, S.A. Ghadami, A.A. Moosavi-Movahedi, R. Khodarahmi, Int. J. Biol. Macromol. 109, 188–204 (2018). https://doi.org/10.1016/j.ijbiomac.2017.12.071

    Article  CAS  PubMed  Google Scholar 

  57. Y. Porat, A. Abramowitz, E. Gazit, Chem. Biol. Drug Des. 67, 27–37 (2006). https://doi.org/10.1111/j.1747-0285.2005.00318.x

    Article  CAS  PubMed  Google Scholar 

  58. J.S. Ahn, J.-H. Lee, J.-H. Kim, S.R. Paik, Anal. Biochem. 367, 259–265 (2007). https://doi.org/10.1016/j.ab.2007.05.023

    Article  CAS  PubMed  Google Scholar 

  59. W. Klunk, Neurobiol. Aging 19, 145–147 (1998)

    Article  CAS  PubMed  Google Scholar 

  60. Y. Li, X. Qiang, L. Luo, Y. Li, G. Xiao, Z. Tan, Y. Deng, Bioorg. Med. Chem. 24, 2342–2351 (2016)

    Article  CAS  PubMed  Google Scholar 

  61. K.-F. Liew, K.-L. Chan, C.-Y. Lee, Eur. J. Med. Chem. 94, 195–210 (2015)

    Article  CAS  PubMed  Google Scholar 

  62. W.E. Klunk, Y. Wang, G. Huang, M.L. Debnath, D.P. Holt, C.A. Mathis, Life Sci. 69, 1471–1484 (2001)

    Article  CAS  PubMed  Google Scholar 

  63. C.A. Mathis, B.J. Bacskai, S.T. Kajdasz, M.E. McLellan, M.P. Frosch, B.T. Hyman, D.P. Holt, Y. Wang, G.-F. Huang, M.L. Debnath, Bioorg. Med. Chem. Lett. 12, 295–298 (2002)

    Article  CAS  PubMed  Google Scholar 

  64. E.E. Nesterov, J. Skoch, B.T. Hyman, W.E. Klunk, B.J. Bacskai, T.M. Swager, Angew. Chem. Int. Ed. 44, 5452–5456 (2005)

    Article  CAS  Google Scholar 

  65. J. Rautio, K. Laine, M. Gynther, J. Savolainen, AAPS J. 10, 92–102 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seyyed Abolghasem Ghadami or Reza Khodarahmi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasbeigi, S., Adibi, H., Moradi, S. et al. Detection/quantification of amyloid aggregation in solution using the novel fluorescent benzofuranone-derivative compounds as amyloid fluorescent probes: synthesis and in vitro characterization. J IRAN CHEM SOC 16, 1225–1237 (2019). https://doi.org/10.1007/s13738-019-01599-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-019-01599-1

Keywords

Navigation