Skip to main content
Log in

Electrical, optical and photocatalytic properties of Ti-loaded ZnO/ZnO and Ti-loaded ZnO nanospheres

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Ti-loaded ZnO and Ti-loaded ZnO/ZnO nanoparticles have been synthesized by sol–gel method and analyzed for photocatalyst application. The phase confirmation was analyzed by powder XRD and surface morphology with HR-SEM and EDAX spectrum. The particle size measured using HR-TEM and SAED pattern confirms the crystalline nature of Ti-loaded ZnO and Ti-loaded ZnO/ZnO nanoparticles. The optical properties were studied with UV–visible diffuse reflectance spectra. The DRS of Ti-loaded ZnO/ZnO nanoparticles are similar to those of pristine ZnO nanoparticles. The KM plots show both the synthesized Ti-loaded ZnO/ZnO and Ti-loaded ZnO exhibit in UV-A region. The electric properties are studied with impedance analyzer, and the results show the charge-transfer resistance of Ti-loaded ZnO/ZnO is larger than that of Ti-loaded ZnO nanoparticles. The photocatalytic activity was studied with methylene blue dye and phenol degradation by Ti-loaded ZnO/ZnO, Ti-loaded ZnO, TiO2 and ZnO nanoparticles. The photocatalytic activity of Ti-loaded ZnO/ZnO nanospheres is slightly higher than that of other nanoparticles, which shows that they have excellent application as photocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. C. Bauer, P. Jacques, A. Kalt, Photooxidation of an azo dye induced by visible light incident on the surface of TiO2. J. Photochem. Photobiol. A 140, 87–92 (2001)

    Article  CAS  Google Scholar 

  2. B. Subash, B. Krishnakumar, M. Swaminathan, M. Shanthi, ZnS–Ag–ZnO as an excellent UV light active photocatalyst for the degradation of AV 7, AB 1, RR 120 and RY 84 dyes: synthesis, characterization and catalytic applications. Ind. Eng. Chem. Res. 53, 12953–12963 (2014)

    Article  CAS  Google Scholar 

  3. B. Subash, B. Krishnakumar, R. Velmurugan, M. Swaminathan, Photodegradation of an azo dye with reusable SrF2–TiO2 under UV light and influence of operational parameters. Sep. Purif. Technol. 101, 98–106 (2012)

    Article  CAS  Google Scholar 

  4. B. Subash, B. Krishanakumar, R. Velmurugan, M. Swaminathan, M. Shanthi, Synthesis of Ce co-loaded Ag–ZnO Photocatalyst with excellent performance for NBB dye degradation under natural sunlight illumination. Catal. Sci. Technol. (RSC) 2, 2319–2326 (2012)

    Article  CAS  Google Scholar 

  5. C. Karunakaran, J. Jayabharathi, R. Sathishkumar, K. Jayamoorthy, Contrasting emission behaviour of phenanthroimidazole with rutile and anatase TiO2 nanoparticles. J. Lumin. 138, 235–241 (2013)

    Article  CAS  Google Scholar 

  6. C. Karunakaran, J. Jayabharathi, K. Jayamoorthy, Fluorescence enhancing and quenching of TiO2 by benzimidazole. Sens. Actuators B Chem. 188, 207–211 (2013)

    Article  CAS  Google Scholar 

  7. S. Kundu, A facile route for the formation of shape selective ZnO nanoarchitectures with superior photocatalytic activity. Colloids Surf. A Physiochem. Eng. Asp. 446, 199–212 (2014)

    Article  CAS  Google Scholar 

  8. Y. Qin, X.D. Wang, Z.L. Wang, Microfiber-nanowire hybrid structure for energy scavenging. Nature 451, 809–813 (2008)

    Article  CAS  Google Scholar 

  9. S. Suresh, S. Karthikeyan, K. Jayamoorthy, Spectral investigations to the effect of bulk and nano ZnO on peanut plant leaves. Karbala Int. J. Mod. Sci. 2(2), 69–77 (2016)

    Article  Google Scholar 

  10. A.A. Khodja, T. Sehili, J.F. Pilichowski, P. Boule, Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions. J. Photochem. Photobiol. A 141, 231–236 (2001)

    Article  CAS  Google Scholar 

  11. C. Ye, Y. Bando, G. Shen, D. Golberg, Thickness-dependent photocatalytic performance of ZnO nanoplatelets. J. Phys. Chem. B 110, 15146–15151 (2006)

    Article  CAS  Google Scholar 

  12. B. Cao, W. Cai, From ZnO nanorods to nanoplates: chemical bath deposition growth and surface-related emissions. J. Phys. Chem. C 112, 680–685 (2007)

    Article  Google Scholar 

  13. X. Qiu, L. Li, J. Zheng, J. Liu, X. Sun, G. Li, Origin of the enhanced photocatalytic activities of semiconductors: a case study of ZnO loaded with Mg2+. J. Phys. Chem. C 112, 12242–12248 (2008)

    Article  CAS  Google Scholar 

  14. X.Q. Qiu, G.S. Li, X.F. Sun, L.P. Li, X.Z. Fu, Nanotechnology 19, 1–8 (2008)

    Google Scholar 

  15. J.W.J. Hamilton, J.A. Byrne, P.S.M. Dunlop, D.D. Dionysiou, M. Pelaez, K. O’Shea, D. Synnott, S.C. Pillai, J. Phys. Chem. C 118(23), 12206–12215 (2014)

    Article  CAS  Google Scholar 

  16. M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O’shea, M.H. Entezari, D.D. Dionysiou, Appl. Catal. B Environ. 125, 331–349 (2012)

    Article  CAS  Google Scholar 

  17. N.A. Ramos-Delgado, L. Hinojosa-Reyes, I.L. Guzman-Mar, M.A. Gracia-Pinilla, A. Hernández-Ramírez, Catal. Today 209, 35–40 (2013)

    Article  CAS  Google Scholar 

  18. P. Thangaraj, M.R. Viswanathan, K. Balasubramanian, S. Panneerselvam, H.D. Mansilla, M.A. Gracia-Pinilla, D. Contreras, J. Ruiz, J. Mater. Sci. Mater. Electron. 26, 8784–8792 (2015)

    Article  CAS  Google Scholar 

  19. P. Fageria, S. Gangopadhyay, S. Pande, Synthesis of ZnO/Au and ZnO/Ag nanoparticles and their photocatalytic application using UV and visible light. RSC Adv. 4, 24962–24972 (2014)

    Article  CAS  Google Scholar 

  20. P. Saravanan, K. Jayamoorthy, S.A. Kumar, Switch-On fluorescence and photo-induced electron transfer of 3-aminopropyltriethoxysilane to ZnO: dual applications in sensors and antibacterial activity. Sens. Actuators B Chem. 221, 784–791 (2015)

    Article  CAS  Google Scholar 

  21. C. Karunakaran, J. Jayabharathi, K. Jayamoorthy, Benzimidazole: dramatic luminescence turn-on by ZnO nanocrystals. Measurement 46(10), 3883–3886 (2013)

    Article  Google Scholar 

  22. B. Subash, B. Krishnakumar, M. Swaminathan, M. Shanthi, Highly active Zr co-loaded Ag-ZnO photocatalyst for the mineralization of Acid Black 1 under UV-A light illumination. Mater. Chem. Phys. 141, 114–120 (2013)

    Article  CAS  Google Scholar 

  23. L. Li, W. Wang, H. Liu, X. Liu, Q. Song, S. Ren, First principles calculations of electronic band structure and optical properties of Cr-loaded ZnO. J. Phys. Chem. C 113, 8460–8464 (2009)

    Article  CAS  Google Scholar 

  24. M. Ahmad, E. Ahmed, Y.W. Zhang, N.R. Khalid, J.F. Xu, M. Ullah, Z.L. Hong, Preparation of highly efficient Al-loaded ZnO photocatalyst by combustion synthesis. Curr. Appl. Phys. 13, 4697–4704 (2013)

    Article  Google Scholar 

  25. J.B. Zhong, J.Z. Li, X.Y. He, J. Zeng, Y. Lu, W. Hu, K. Lin, Improved photocatalytic performance of Pd-loaded ZnO. Curr. Appl. Phys. 12, 998–1001 (2012)

    Article  Google Scholar 

  26. P.K. Giri, S. Bhattacharyya, D.K. Singh, R. Kesavamoorthy, B.K. Panigrahi, K.G.M. Nair, J. Appl. Phys. 102, 093515 (2007)

    Article  Google Scholar 

  27. H. P. Klug, L. E. Alexander, X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd edn. (Wiley, New York, 1974). ISBN:978-0-471-49369-3

  28. A.R. Stokes, A.J.C. Wilson, The diffraction of X rays by distorted crystal aggregates-I. Proc. Phys. Soc. 56, 174 (1944)

    Article  CAS  Google Scholar 

  29. Y. Yang, Y. Jin, H. He, Q. Wang, Y. Tu, H. Lu, Z. Ye, J. Am. Chem. Soc. 132, 13381 (2010)

    Article  CAS  Google Scholar 

  30. C. Karunakaran, P. Magesan, P. Gomathisankar, P. Vinayagamoorthy, Superlattices Microstruct. 83, 659–667 (2015)

    Article  CAS  Google Scholar 

  31. C. Karunakaran, S. Kalaivani, Mater. Sci. Semicond. Process. 27, 352–361 (2014)

    Article  CAS  Google Scholar 

  32. B. Subash, B. Krishnakumar, R. Velmurugan, M. Swaminathan, Sep. Purif. Technol. 101, 98–106 (2012)

    Article  CAS  Google Scholar 

  33. R. Velmurugan, B. Krishnakumar, R. Kumar, M. Swaminathan, Arabian J. Chem. 5, 447–452 (2012)

    Article  CAS  Google Scholar 

  34. B. Subash, B. Krishnakumar, M. Swaminathan, M. Shanthi, J. Mol. Catal. A Chem. 366, 54–63 (2013)

    Article  CAS  Google Scholar 

  35. G. Kortum, Reflectance Spectroscopy (Springer, New York, 1969)

    Book  Google Scholar 

  36. V. Cassina, L. Gerosa, A. Podesta, G. Ferrari, M. Sampietro, F. Fiorentini, T. Mazza, C. Lenardi, P. Milani, Phys. Rev. B 79, 115422–115428 (2009)

    Article  Google Scholar 

  37. E. Ziegler, A. Heinrich, H. Opperman, G. Stover, Phys. Status Solidi (a) 6, 635–648 (1981)

    Article  Google Scholar 

  38. A.K.A. Gafoor, M.M. Musthafa, K.P. Kumar, P.P. Pradyumnan, J. Mater. Sci. Mater. Electron. 23, 2011–2016 (2012)

    Article  Google Scholar 

  39. D. Chen, A.K. Ray, Water Res. 32, 3223 (1998)

    Article  CAS  Google Scholar 

  40. S. Kant, A. Kumar, Adv. Mater. Lett. 3, 350–354 (2012)

    Article  CAS  Google Scholar 

  41. A.S. Menon, N. Kalarikkal, S. Thomas, Indian J. NanoSci. 1, 16–24 (2013)

    Google Scholar 

  42. C.M. The, A.R. Mohamed, A review. J. Alloys Compd. 509, 1648–1660 (2011)

    Article  Google Scholar 

  43. A. Aboukais, E. Abi-Aad, B. Tauk, Mater. Chem. Phys. 142, 564–571 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Suresh.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 176 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suresh, S., Subash, B. & Karthikeyan, S. Electrical, optical and photocatalytic properties of Ti-loaded ZnO/ZnO and Ti-loaded ZnO nanospheres. J IRAN CHEM SOC 14, 1591–1600 (2017). https://doi.org/10.1007/s13738-017-1100-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-017-1100-6

Keywords

Navigation