Skip to main content
Log in

Juvenile nephronophthisis and dysthyroidism: a rare association

  • Case report
  • Published:
CEN Case Reports Aims and scope Submit manuscript

Abstract

Nephronophthisis, an autosomal recessive kidney disease, represents the most frequent genetic cause of end-stage kidney disease in the first three decades of life. A 27-year-old male was presented with gait imbalance, sever pruritus since 10 days prior time of admission. In past medical history, he had bilateral cataract, torsional nystagmus, and bilateral optic nerve atrophy since 2 years of age. He was also mentioned history of multinodular goiter with dysfunctional thyroid state since 2 years before admission. At admission bilateral blindness, torsional nystagmus, asymmetric thyromegaly with nodularity was found in physical examination. Laboratory tests showed elevated urea and creatinine (200, 10.7 mg/dl), hypomagnesemia (1.1 mEq/l), decreased thyroid stimulating hormone (<0.004 mIU/l). Ophthalmologist consultation confirmed retinitis pigmentosa. Renal sonography showed small-sized kidneys. Brain magnetic resonance imaging did not reveal molar tooth sign. Genetic testing performed and a large homozygous deletion at the NPHP1 gene locus was found. The patient was diagnosed with juvenile nephronophthisis and consideration of dysthyroidism as extrarenal manifestation of nephronophthisis is suggested in this case. Furthermore, loss of function mutation in SLC41A1 gene that leads to magnesium depletion must be noted in patients with suspected to nephronophthisis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Salomon R, Saunier S, Niaudet P. Nephronophthisis. Pediatr Nephrol. 2009;24(12):2333–44.

    Article  PubMed  Google Scholar 

  2. Benzing T, Schermer B. Clinical spectrum and pathogenesis of nephronophthisis. Curr Opin Nephrol Hypertens. 2012;21(3):272–8.

    Article  CAS  PubMed  Google Scholar 

  3. Hurd TW, Hildebrandt F. Mechanisms of nephronophthisis and related ciliopathies. Nephron Exp Nephrol. 2011;118(1):e9–14.

    Article  PubMed  Google Scholar 

  4. Krishnan R, Eley L, Sayer JA. urinary concentration defects and mechanisms underlying nephronophthisis. Kidney Blood Press Res. 2008;31:152–62.

    Article  CAS  PubMed  Google Scholar 

  5. Simms RJ, Eley L, Sayer JA. Nephronophthisis. Eur J Hum Genet. 2009;17(4):406–16.

    Article  CAS  PubMed  Google Scholar 

  6. Chaki M, Hoefele J, Allen SJ, Ramaswami G, Janssen S, Bergmann C, et al. Genotype–phenotype correlation in 440 patients with NPHP-related ciliopathies. Kidney Int. 2011;80:1239–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wolf MTF. Nephronophthisis and related syndromes. Curr Opin Pediatr. 2015;27(2):201–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wolf MTF, Hildebradnt F. Nephronophthisis. Pediatr Nephrol. 2011;26(2):181–94.

    Article  PubMed  Google Scholar 

  9. Zimmermann KW. Beitrage zur Kenntnis einiger Drusen und Epithelien. Arch mikrosk Anat. 1898; 52:552–706.

    Article  Google Scholar 

  10. D′angelo A, Franco B. The dynamic cilium in human diseases. PathoGenetics. 2009;2(3):1–15.

    Google Scholar 

  11. Bowser Labs, Aberdeen. http://www.browserlab.org/primarycilia/cilialist.html.

  12. Hildebrandt F, Zhou W. Nephronophthisis—associated ciliopathies. J Am Soc Nephrol. 2007;18(6):1855–71.

    Article  CAS  PubMed  Google Scholar 

  13. Kolisek M, Nestler A, Vormann J, Schweigel-RÓ§ntgen M. Human gene SLC41A1 encodes for the Na+/Mg2+ exchanger. Am J Physiol Cell Physiol. 2012;302(1):C318–26.

    Article  CAS  PubMed  Google Scholar 

  14. Hurd TW, Otto EA, Mishima E, Gee HY, Inoue H, Inazu, et al. Mutation of the Mg2+ transporter SLCA41A1 results in a nephronophthisis-like phenotype. J Am Soc Nephrol. 2013;24(6):967–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kolisek M, Sponder G, Mastrototaro L, Smorodchenko A, Launay P, Vormann J, et al. Substitution p.A 350 v in Na+/Mg2+ exchanger SLC41A1 potentially associated with Parkinson’s disease, is a gain of function mutation. PLoS One. 2013;8(8):1–11.

    Article  Google Scholar 

  16. Simms RJ, Hynes AM, Eley L, Sayer JA. Nephronophthisis: a genetically diverse ciliopathy. Int J Nephrol. 2011;2011:3–10.

    Article  Google Scholar 

  17. Castori M, Valente EM, Donati MA, Salvi S, Fazzi A, Procopio E, et al. NPHP1 gene deletion is arare cause of joubert syndrome related disorders. J Med Genet. 2005;42:9.

    Article  Google Scholar 

  18. Parisi MA. Clinical and molecular features of joubert syndrome and related disorders. Am J Med Genet C Semin Med Genet. 2009;151:326–40.

    Article  Google Scholar 

  19. Soliman NA, Hildebrandt F, Otto EA, Nabhan MM, Allen SJ, Badr AM, et al. Clinical characterization and NPHP1 mutations in nephronophthisis and associated ciliopathies: a single center experience. Saudi J Kidney Dis Transpl. 2012;23:1090–8.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Incecik F, Herguner MÖ, Altunbasak S, Gleeson JS. Joubert syndrome: report of 11 cases. Turk J Pediatr. 2012;54:605–11.

    PubMed  PubMed Central  Google Scholar 

  21. Parisi MA, Bennett CL, Eckert ML, Dobyns WB, Gleeson GS, Shaw DWW, et al. The NPHP1 gene deletion associated with juvenile nephronophthisis is present in a subset of individuals with joubert syndrome. Am J Hum Genet. 2004;75:82–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Maria BL, Quisling RG, Rosainz LC, Yachnis AT, Gitten J, Dede D, et al. Molar tooth sign in joubert syndrome: clinical, radiologic, and pathologic significance. J Child Neurol. 1999;14:368–76.

    Article  CAS  PubMed  Google Scholar 

  23. Hildebrandt F, Attanasio M, Otto E. Nephronophthisis: disease mechanism of a ciliopathy. J Am Soc Nephrol. 2009;20(1):23–35.

    Article  CAS  PubMed  Google Scholar 

  24. Arts HH, Knoers NV. Current insights into renal ciliopathies: what can genetics teach us? Pediatr Nephrol. 2013;28(6):863–74.

    Article  PubMed  Google Scholar 

  25. Renkema KY, Stokman MF, Giles RH, Knoers NV. Next-generation sequencing for research and diagnostics in kidney disease. Nat Rev Nephrol. 2014;10(8):433–44.

    Article  CAS  PubMed  Google Scholar 

  26. Vivante A, Hildebrandt F. Exploring the genetic basis of early-onset chronic kidney disease. Nat Rev Nephrol. 2016;12(3):133–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gee HY, Otto EA, Hurd TW, Ashraf S, Chaki M, Cluckey A, et al. Whole exome resequencing distinguishes cystic kidney diseases from phenocopies in renal ciliopathies. Kidney Int. 2014;85(4):880–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the patient and his relatives for their special cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fateme Shamekhi Amiri.

Ethics declarations

This article does not contain any studies with animals performed by any of the authors.

Conflict of interest

The authors declare no conflict of interests.

Informed consent

Informed consent was obtained from all individual participants included in the study.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amiri, F.S., Kariminejad, A. Juvenile nephronophthisis and dysthyroidism: a rare association. CEN Case Rep 6, 98–104 (2017). https://doi.org/10.1007/s13730-017-0252-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13730-017-0252-7

Keywords

Navigation