Skip to main content
Log in

Impact properties of carbon fibers-epoxy composite/aluminum laminates: effect of cryogenic and thermal aging

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Carbon-reinforced aluminum laminate (CARALL) structures, by exposure to various aging conditions, were studied to examine the effect of aging on their impact properties. After 40 thermal cycles between 25 and 100 ℃, there was improvement in impact strength of the structures with unidirectional configurations, with maximum improvement of 22.5%. Under isothermal condition (at constant temperature of 100 ℃), a 350 min aging caused 47.7% improvement in the impact strength. By applying cryogenic cycles between − 196 and 25 ℃, in some structures the impact strength improved after 20 cycles, whereas other structures improved after 50 cycles. The most improvement in the impact strength under cryogenic isothermal condition was about 53.5%, obtained after aging for 150 min at − 196 ℃. It was found that fibers pull out, fracturing, and layers delamination are the mechanisms responsible for deterioration of impact strength. Whereas, lateral and longitudinal crack propagation and the plastic deformation of aluminum layers are the energy absorption mechanisms, which can improve the impact strength.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ebrahimnezhad-Khaljiri H, Eslami-Farsani R (2017) Thermal and mechanical properties of hybrid carbon/oxidized polyacrylonitrile fibers-epoxy composites. Polym Compos 38:1412–1417. https://doi.org/10.1002/pc.23708

    Article  CAS  Google Scholar 

  2. Turaka S, Reddy KVK, Sahu RK, Katiyar JK (2021) Mechanical properties of MWCNTs and graphene nanoparticles modified glass fibre-reinforced polymer nanocomposite. Bull Mater Sci 44:194. https://doi.org/10.1007/s12034-021-02444-z

    Article  CAS  Google Scholar 

  3. Le Guen-Geffroy A, Davies P, Le Gac PY, Habert B (2020) Influence of seawater ageing on fracture of carbon fiber reinforced epoxy composites for ocean engineering. Oceans 1:198–214. https://doi.org/10.3390/oceans1040015

    Article  Google Scholar 

  4. Najafi M, Darvizeh A, Ansari R (2018) Effect of nanoclay addition on the hygrothermal durability of glass/epoxy and fiber metal laminates. Fibers Polym 19:1956–1969. https://doi.org/10.1007/s12221-018-8235-7

    Article  CAS  Google Scholar 

  5. Najafi M, Darvizeh A, Ansari R (2019) Effect of salt water conditioning on novel fiber metal laminates for marine applications. Proc Inst Mech Eng Part L J Mater Des Appl 233:1542–1554. https://doi.org/10.1177/1464420718767946

    Article  CAS  Google Scholar 

  6. Li S, Chen D, Yuan Y, Gao C, Cui Y, Wang H, Liu X, Liu M, Wu Z (2020) Influence of flexible molecular structure on the cryogenic mechanical properties of epoxy matrix and carbon fiber/epoxy composite laminate. Mater Des 195:109028. https://doi.org/10.1016/j.matdes.2020.109028

    Article  CAS  Google Scholar 

  7. Najafi M, Eslami-Farsani R, Saeedi A, Ebrahimnezhad-Khaljiri H (2022). In: Mavinkere Rangappa S, Parameswaranpillai J, Siengchin S, Thomas S (eds) Handbook of epoxy/fiber composites, 1st edn. Springer, Singapore. https://doi.org/10.1007/978-981-15-8141-0_16-1

    Chapter  Google Scholar 

  8. Di Filippo M, Alessi S, Pitarresi G, Sabatino MA, Zucchelli A, Dispenza C (2016) Hydrothermal aging of carbon reinforced epoxy laminates with nanofibrous mats as toughening interlayers. Polym Degrad Stab 126:188–195. https://doi.org/10.1016/j.polymdegradstab.2016.02.011

    Article  CAS  Google Scholar 

  9. Ebrahimnezhad-Khaljiri H (2022). In: Muthukumar C, Krishnasamy S, Thiagamani SMK, Siengchin S (eds) Aging effects on natural fiber-reinforced polymer composites, 1st edn. Springer, Singapore. https://doi.org/10.1007/978-981-16-8360-2_7

    Chapter  Google Scholar 

  10. Bellenger V, Decelle J, Huet N (2005) Ageing of a carbon epoxy composite for aeronautic applications. Compos B 36:189–194. https://doi.org/10.1016/j.compositesb.2004.04.016

    Article  CAS  Google Scholar 

  11. Zavatta N, Rondina F, Falaschetti MP, Donati L (2021) Effect of thermal ageing on the mechanical strength of carbon fibre reinforced epoxy composites. Polymers 13:2006. https://doi.org/10.3390/polym13122006

    Article  CAS  Google Scholar 

  12. Sebaey TA (2020) Effect of exposure temperature on thecrashworthiness of carbon/epoxy compositerectangular tubes under quasi-static compression. Polymers 12:2028. https://doi.org/10.3390/POLYM12092028

    Article  CAS  Google Scholar 

  13. Ammar-Khodja I, Picard C, Fois M, Marais C, Netchitaïlo P (2006) Preliminary results on thermo-oxidative ageing of multi-hole carbon/epoxy composites. Compos Sci Technol 69:1427–1431. https://doi.org/10.1016/j.compscitech.2008.09.014

    Article  CAS  Google Scholar 

  14. Zhang M, Sun B, Gu B (2016) Accelerated thermal ageing of epoxy resin and 3-D carbon fiber/epoxy braided composites. Compos A 85:163–171. https://doi.org/10.1016/j.compositesa.2016.03.028

    Article  CAS  Google Scholar 

  15. Tual N, Carrere N, Davies P, Bonnemains T, Lolive E (2015) Characterization of sea water ageing effects on mechanical properties of carbon/epoxy composites for tidal turbine blades. Compos A 78:380–389. https://doi.org/10.1016/j.compositesa.2015.08.035

    Article  CAS  Google Scholar 

  16. He Y, Chen Q, Yang S, Lu C, Feng M, Jiang Y, Cao G, Zhang J, Liu C (2018) Micro-crack behavior of carbon fiber reinforced Fe3O4/graphene oxide modified epoxy composites for cryogenic application. Compos A 108:12–22. https://doi.org/10.1016/j.compositesa.2018.02.014

    Article  CAS  Google Scholar 

  17. De S, Shivangi PN, Choudhury S, Fulmali AO, Ray BC, Prusty RK (2021) Effects of fiber surface grafting by functionalized carbon nanotubes on the interfacial durability during cryogenic testing and conditioning of CFRP composites. J Appl Polym Sci 138:51231. https://doi.org/10.1002/app.51231

    Article  CAS  Google Scholar 

  18. Mirzamohammadi S, Eslami-Farsani R, Ebrahimnezhad-Khaljiri H (2022) The characterization of the flexural and shear performances of laminated aluminum/jute-basalt fibers epoxy composites containing carbon nanotubes: as multi-scale hybrid structures. Thin-Walled Struct 179:109690. https://doi.org/10.1016/j.tws.2022.109690

    Article  Google Scholar 

  19. Jakubczak P, Bieniaś J, Droździel M (2020) The collation of impact behaviour of titanium/carbon, aluminum/carbon and conventional carbon fibres laminates. Thin-Walled Struct 155:106952. https://doi.org/10.1016/j.tws.2020.106952

    Article  Google Scholar 

  20. Wu XT, Zhan LH, Huang MH, Zhao X, Wang X, Zhao GQ (2021) Corrosion damage evolution and mechanical properties of carbon fiber reinforced aluminum laminate. J Cent South Univ 28:657–668. https://doi.org/10.1007/s11771-021-4635-8

    Article  CAS  Google Scholar 

  21. Lin Y, Huang Y, Huang T, Liao B, Zhang D, Li C (2019) Characterization of progressive damage behaviour and failure mechanisms of carbon fibre reinforced aluminium laminates under three-point bending. Thin-Walled Struct 135:494–506. https://doi.org/10.1016/j.tws.2018.12.002

    Article  Google Scholar 

  22. Shamohammadi Maryan M, Ebrahimnezhad-Khaljiri H, Eslami-Farsani R (2022) The experimental assessment of the various surface modifications on the tensile and fatigue behaviors of laminated aluminum/aramid fibers-epoxy composites. Int J Fatigue 154:106560. https://doi.org/10.1016/j.ijfatigue.2021.106560

    Article  CAS  Google Scholar 

  23. Ebrahimnezhad-Khaljiri H, Eslami-Farsani R, Talebi S (2020) Investigating the high velocity impact behavior of the laminated composites of aluminum/jute fibers-epoxy containing nanoclay particles. Fibers Polym 21:2607–2613. https://doi.org/10.1007/s12221-020-1209-6

    Article  CAS  Google Scholar 

  24. García-Moreno I, Caminero MÁ, Rodríguez GP, López-Cela JJ (2019) Effect of thermal ageing on the impact and flexural damage behaviour of carbon fibre-reinforced epoxy laminates. Polymers 11:80. https://doi.org/10.3390/polym11010080

    Article  CAS  Google Scholar 

  25. Najafi M, Ansari R (2019) Influence of thermal aging on mechanical properties of fiber metal laminates hybridized with nanoclay. Proc Inst Mech Eng Part C J Mech Eng Sci. 233:7003–7018. https://doi.org/10.1177/0954406219866871

    Article  CAS  Google Scholar 

  26. Lafarie-Frenot MC (2006) Damage mechanisms induced by cyclic ply-stresses in carbon-epoxy laminates: environmental effects. Int J Fatigue 28:1202–1216. https://doi.org/10.1016/j.ijfatigue.2006.02.014

    Article  CAS  Google Scholar 

  27. Daghia F, Zhang F, Cluzel C, Ladevèze P (2015) Thermo-mechano-oxidative behavior at the ply’s scale: The effect of oxidation on transverse cracking in carbon-epoxy composites. Compos Struct 134:602–612. https://doi.org/10.1016/j.compstruct.2015.08.103

    Article  Google Scholar 

  28. Rahmani H, Eslami-Farsani R, Ebrahimnezhad-Khaljiri H (2020) High velocity impact response of aluminum-carbon fibers-epoxy laminated composites toughened by nano silica and zirconia. Fibers Polym 21:170–178. https://doi.org/10.1007/s12221-020-9594-4

    Article  CAS  Google Scholar 

  29. Reis VL, Opelt CV, Cândido GM, Rezende MC, Donadon MV (2018) Effect of fiber orientation on the compressive response of plain weave carbon fiber/epoxy composites submitted to high strain rates. Compos Struct 203:952–959. https://doi.org/10.1016/j.compstruct.2018.06.016

    Article  Google Scholar 

  30. Barjasteh E, Bosze EJ, Tsai YI, Nutt SR (2009) Thermal aging of fiberglass/carbon-fiber hybrid composites. Compos A 40:2038–2045. https://doi.org/10.1016/j.compositesa.2009.09.015

    Article  CAS  Google Scholar 

  31. Shukla MJ, Kumar DS, Rathore DK, Prusty RK, Ray BC (2016) An assessment of flexural performance of liquid nitrogen conditioned glass/epoxy composites with multiwalled carbon nanotube. J Compos Mater 50:3077–3088. https://doi.org/10.1177/0021998315615648

    Article  CAS  Google Scholar 

  32. Ray BC (2006) Adhesion of glass/epoxy composites influenced by thermal and cryogenic environments. J Appl Polym Sci 102:1943–1949. https://doi.org/10.1002/app.24488

    Article  CAS  Google Scholar 

  33. Kim MG, Kang SG, Kim CG, Kong CW (2010) Tensile properties of carbon fiber composites with different resin compositions at cryogenic temperatures. Adv Compos Mater 19:63–77. https://doi.org/10.1163/156855109X434838

    Article  CAS  Google Scholar 

  34. Najafi M, Ansari R, Darvizeh A (2019) Effect of cryogenic aging on nanophased fiber metal laminates and glass/epoxy composites. Polym Compos 40:2523–2533. https://doi.org/10.1002/pc.25134

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrdad Javadi.

Ethics declarations

Conflict of interest

All the authors of this manuscript declare that there is no competing financial and conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Askari, M., Javadi, M., Eslami-Farsani, R. et al. Impact properties of carbon fibers-epoxy composite/aluminum laminates: effect of cryogenic and thermal aging. Iran Polym J 32, 187–201 (2023). https://doi.org/10.1007/s13726-022-01116-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-022-01116-x

Keywords

Navigation