Skip to main content
Log in

Development of gelatin/chitosan membranes with controlled microstructure by electrospinning

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Electrospun membranes obtained through electrospinning are very promising since they exhibit a high porosity and surface area. The present study proposes the use of gelatin (GL) made from fish by-products in combination with a polycationic polysaccharide (chitosan, CH) and a water-soluble polymer (polyethylene oxide, PEO) to obtain unitary, binary or even ternary nanofibrous membranes which would be suitable in different applications, such as biomaterials or filtration industry. This work aims to correlate the microstructure of final ternary membranes (GL–CH–PEO) and the properties of the solutions by evaluating their viscosity obtained through rheological characterization, as well as their conductivity and density, which are key parameters to obtain a suitable electrospinning processing technique. The results indicate that membranes with a fairly homogeneous distribution of fibers can be obtained using either biopolymer/PEO binary solutions (i.e., 00/85/30 or 05/00/35 systems) or even ternary solutions (05/85/35 or 05/85/35) with diameters shorter than 200 nm. In this sense, physicochemical characterization of the polymer/biopolymer solutions used for electrospinning processing technique is essential for the understanding of this technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Davis ME (2002) Ordered porous materials for emerging applications. Nature 417:813

    Article  CAS  Google Scholar 

  2. Stevens DM, Shu JY, Reichert M, Roy A (2017) Next-generation nanoporous materials: progress and prospects for reverse osmosis and nanofiltration. Ind Eng Chem Res 56:10526–10551

    Article  CAS  Google Scholar 

  3. Zohora FT, Azim AYMA (2014) Biomaterials as porous scaffolds for tissue engineering applications: a review. Eur Sci J 10:186–209

    Google Scholar 

  4. Kadam VV, Wang L, Padhye R (2018) Electrospun nanofibre materials to filter air pollutants—a review. J Ind Text 47:2253–2280

    Article  CAS  Google Scholar 

  5. Meng J, Song L, Meng J, Kong H, Zhu G, Wang C, Xu L, Xie S, Xu H (2006) Using single-walled carbon nanotubes nonwoven films as scaffolds to enhance long-term cell proliferation in vitro. J Biomed Mater Res Part A 79A:298–306

    Article  CAS  Google Scholar 

  6. Perez-Puyana V, Jiménez-Rosado M, Romero A, Guerrero A (2018) Development of PVA/gelatin nanofibrous scaffolds for tissue engineering via electrospinning. Mater Res Express 5:035401

    Article  CAS  Google Scholar 

  7. Escobar IC, Hong S, Randall AA (2000) Removal of assimilable organic carbon and biodegradable dissolved organic carbon by reverse osmosis and nanofiltration membranes. J Memb Sci 175:1–17

    Article  CAS  Google Scholar 

  8. Moydeen AM, Padusha MS, Aboelfetoh EF, Al-Deyab SS, El-Newehy MH (2018) Fabrication of electrospun poly(vinyl alcohol)/dextran nanofibers via emulsion process as drug delivery system: kinetics and in vitro release study. Int J Biol Macromol 116:1250–1259

    Article  CAS  Google Scholar 

  9. Nouri M, Mokhtari J, Rostamloo M (2013) Electrospun poly(ɛ-caprolactone)/nanoclay nanofibrous mats for tissue engineering. Fibers Polym 14:957–964

    Article  CAS  Google Scholar 

  10. Martín-Alfonso JE, Cuadri AA, Greiner A (2018) The combined effect of formulation and pH on properties of polyethylene oxide composite fiber containing egg albumen protein. Int J Biol Macromol 112:996–1004

    Article  CAS  Google Scholar 

  11. Nakamura EM, Cordi L, Almeida GS, Duran N, Mei LI (2005) Study and development of LDPE/starch partially biodegradable compounds. J Mater Process Technol 162–163:236–241

    Article  CAS  Google Scholar 

  12. Huang X, Netravali A (2007) Characterization of flax fiber reinforced soy protein resin based green composites modified with nano-clay particles. Compos Sci Technol 67:2005–2014

    Article  CAS  Google Scholar 

  13. Ji W, Zhang C, Ji H (2017) Purification, identification and molecular mechanism of two dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from Antarctic krill (Euphausia superba) protein hydrolysate. J Chromatogr B 1064:56–61

    Article  CAS  Google Scholar 

  14. Khamforoush M, Hatami T, Mahjob M, Dabirian F, Zandi A (2014) Performance evaluation of modified rotating-jet electrospinning method by investigating the effect of collector size on the nanofibers alignment. Iran Polym J 23:569–580

    Article  CAS  Google Scholar 

  15. Sánchez P, Pedraz JL, Orive G (2017) Biologically active and biomimetic dual gelatin scaffolds for tissue engineering. Int J Biol Macromol 98:486–494

    Article  CAS  Google Scholar 

  16. Pu C, He J, Cui S, Gao W (2014) Fabrication of nanofibers by a modified air-jet electrospinning method. Iran Polym J 23:13–25

    Article  Google Scholar 

  17. Gomes SR, Rodrigues G, Martins GG, Henriques CM, Silva JC (2013) In vitro evaluation of crosslinked electrospun fish gelatin scaffolds. Mater Sci Eng C 33:1219–1227

    Article  CAS  Google Scholar 

  18. Schiffman JD, Schauer CL (2008) A review: electrospinning of biopolymer nanofibers and their applications. Polym Rev 48:317–352

    Article  CAS  Google Scholar 

  19. Zhang CX, Yuan XY, Wu LL, Han Y, Sheng J (2005) Study on morphology of electrospun poly(vinyl alcohol) mats. Eur Polym J 41:423–432

    Article  CAS  Google Scholar 

  20. Fu R, Yao K, Zhang Q, Jia D, Zhao J, Chi Y (2017) Collagen hydrolysates of skin shavings prepared by enzymatic hydrolysis as a natural flocculant and their flocculating property. Appl Biochem Biotechnol 182:55–66

    Article  CAS  Google Scholar 

  21. Manning GS (1969) Limiting laws and counterion condensation in polyelectrolyte solutions I: colligative properties. J Chem Phys 51:924–933

    Article  CAS  Google Scholar 

  22. Wannatong L, Sirivat A, Supaphol P (2004) Effects of solvents on electrospun polymeric fibers: preliminary study on polystyrene. Polym Int 53:1851–1859

    Article  CAS  Google Scholar 

  23. McClements DJ (2004) Food emulsions: principles, practice and techniques, 2nd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  24. Pakravan M, Heuzey MC, Ajji A (2011) A fundamental study of chitosan/PEO electrospinning. Polymer 52:4813–4824

    Article  CAS  Google Scholar 

  25. Barnes HA (2000) A handbook of elementary rheology. University of Wales, Institute of Non-Newtonian Fluid Mechanics, Wales

    Google Scholar 

  26. Fetters LJ, Lohse DJ, Richter D, Witten TA, Zirkel A (1994) Connection between polymer molecular-weight, density, chain dimensions, and melt viscoelastic properties. Macromolecules 27:4639–4647

    Article  CAS  Google Scholar 

  27. Ramakrishna S, Fujihara K, Teo WE, Lim TC, Ma Z (2005) An introduction to electrospinning and nanofibers. World Scientific Publishing Co., Singapore

    Book  Google Scholar 

  28. Tiwari SK, Venkatraman SS (2012) Importance of viscosity parameters in electrospinning of monolithic and core–shell fibers. Mater Sci Eng C 32:1037–1042

    Article  CAS  Google Scholar 

  29. Chen Z, Mo X, Qing F (2007) Electrospinning of collagen–chitosan complex. Mater Lett 61:3490–3494

    Article  CAS  Google Scholar 

  30. Queiroz MF, Melo KRT, Sabry DA, Sassaki G, Rocha H (2015) Does the use of chitosan contribute to oxalate kidney stone formation? Mar Drugs 13:141–158

    Article  CAS  Google Scholar 

  31. Wen SJ, Richardson TJ, Ghantous DI, Striebel KA, Ross PN, Cairns EJ (1996) FTIR characterization of PEO + LiN (CF3SO2)2 electrolytes LiTFSI) s o ~ Li. J Electroanal Chem 408:113–118

    Article  Google Scholar 

  32. Cebi N, Durak MZ, Toker OS, Sagdic O, Arici M (2016) An evaluation of Fourier transforms infrared spectroscopy method for the classification and discrimination of bovine, porcine and fish gelatins. Food Chem 190:1109–1115

    Article  CAS  Google Scholar 

  33. Chen JP, Chang GY, Chen JK (2008) Electrospun collagen/chitosan nanofibrous membrane as wound dressing. Colloids Surfaces A Physicochem Eng Asp 313–314:183–188

    Article  CAS  Google Scholar 

  34. Huang J, Chang PR, Dufresne A (2014) In: Huang J, Chang PR, Lin N, Dufresne A (eds) Polysaccharide-based nanocrystals: chemistry and applications. Wiley, Germany

    Google Scholar 

Download references

Acknowledgements

This work is part of a research project, with reference CTQ2015-71164-P, sponsored by “Ministerio de Economía y Competitividad” from Spanish Government (MINECO/FEDER, EU). The authors gratefully acknowledge their financial support. The authors also acknowledge the Microscopy Service (CITIUS-Universidad de Sevilla) for providing full access and assistance to the JEOL 6460-LV. The authors also acknowledge the University of Seville for the financial support to Victor Perez-Puyana and Manuel Felix supported by VPPI-US.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Felix.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perez-Puyana, V., Felix, M., Cabrera, L. et al. Development of gelatin/chitosan membranes with controlled microstructure by electrospinning. Iran Polym J 28, 921–931 (2019). https://doi.org/10.1007/s13726-019-00755-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-019-00755-x

Keywords

Navigation