Skip to main content
Log in

The Role of Mitochondrial Adaptation and Metabolic Flexibility in the Pathophysiology of Obesity and Insulin Resistance: an Updated Overview

  • Metabolism (M Dalamaga, Section Editor)
  • Published:
Current Obesity Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The term “metabolic flexibility” denotes the dynamic responses of the cellular oxidative machinery in order to adapt to changes in energy substrate availability. A progressive loss of this adaptive capacity has been implicated in the development of obesity-related comorbidities. Mitochondria are dynamic intracellular organelles which play a fundamental role in energy metabolism, and the mitochondrial adaptation to environmental challenges may be viewed as the functional component of metabolic flexibility. Herein, we attempt to comprehensively review the available evidence regarding the role of mitochondrial adaptation and metabolic flexibility in the pathogenesis of obesity and related morbidities, namely insulin resistance states and non-alcoholic fatty liver disease (NAFLD).

Recent Findings

Overall, there is a concrete body of evidence to support the presence of impaired mitochondrial adaptation as a principal component of systemic metabolic inflexibility in conditions related to obesity. There are still many unresolved questions regarding the relationship between the gradual loss of mitochondrial adaptability and the progression of obesity-related complications, such as causality issues, the timely appearance and reversibility of the described disturbances, and the generalizability of the findings to the mitochondrial content of every affected tissue or organ.

Summary

The evidence regarding the causality between the observed associations remains inconclusive, although most of the available data points towards a bidirectional, potentially mutually amplifying relationship. The spectrum of NAFLD is of particular interest, since functional and pathological changes in the course of its development closely mirror the progression of dysmetabolism, if not constituting a dynamic component of the latter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Malik VS, Willet WC, Hu FB. Nearly a decade on - trends, risk factors and policy implications in global obesity. Nat Rev Endocrinol. 2020;16:615–6. https://doi.org/10.1038/s41574-020-00411-y.

    Article  PubMed  Google Scholar 

  2. Guarisco G, Leonetti F. Covid-19 and diabesity: when a pandemia cross another pandemia. Eating and Weight Disorders: EWD. 2020:1–4. https://doi.org/10.1007/s40519-020-00958-9.

  3. Tsilingiris D, Liatis S, Dalamaga M, Kokkinos A. The fight against obesity escalates: new drugs on the horizon and metabolic implications. Curr Obes Rep. 2020;9:136–49. https://doi.org/10.1007/s13679-020-00378-x.

    Article  PubMed  Google Scholar 

  4. Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, Colagiuri S, Guariguata L, Motala AA, Ogurtsova K, Shaw JE, Bright D, Williams R, IDF Diabetes Atlas Committee Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract 2019;157:107843. https://doi.org/10.1016/j.diabres.2019.107843

  5. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology (Baltimore, Md). 2016;64:73–84. https://doi.org/10.1002/hep.28431.

    Article  Google Scholar 

  6. Hill JO, Wyatt HR, Peters JC. Energy balance and obesity. Circulation. 2012;126:126–32. https://doi.org/10.1161/circulationaha.111.087213.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Corpeleijn E, Saris WH, Blaak EE. Metabolic flexibility in the development of insulin resistance and type 2 diabetes: effects of lifestyle. Obesity Reviews: an official journal of the International Association for the Study of Obesity. 2009;10:178–93. https://doi.org/10.1111/j.1467-789X.2008.00544.x.

    Article  CAS  Google Scholar 

  8. Gastaldelli A. Insulin resistance and reduced metabolic flexibility: cause or consequence of NAFLD? Clinical Science (London, England: 1979). 2017;131:2701–4. https://doi.org/10.1042/cs20170987.

    Article  CAS  Google Scholar 

  9. Wikström M, Sharma V, Kaila VR, Hosler JP, Hummer G. New perspectives on proton pumping in cellular respiration. Chem Rev. 2015;115:2196–221. https://doi.org/10.1021/cr500448t.

    Article  CAS  PubMed  Google Scholar 

  10. Cogliati S, Enriquez JA, Scorrano L. Mitochondrial cristae: where beauty meets functionality. Trends Biochem Sci. 2016;41:261–73. https://doi.org/10.1016/j.tibs.2016.01.001.

    Article  CAS  PubMed  Google Scholar 

  11. Osellame LD, Blacker TS, Duchen MR. Cellular and molecular mechanisms of mitochondrial function. Best Pract Res Clin Endocrinol Metab. 2012;26:711–23. https://doi.org/10.1016/j.beem.2012.05.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Newman JC, Verdin E. β-Hydroxybutyrate: a signaling metabolite. Annu Rev Nutr. 2017;37:51–76. https://doi.org/10.1146/annurev-nutr-071816-064916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tait SW, Green DR. Mitochondria and cell signalling. J Cell Sci. 2012;125:807–15. https://doi.org/10.1242/jcs.099234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang C, Youle RJ. The role of mitochondria in apoptosis*. Annu Rev Genet. 2009;43:95–118. https://doi.org/10.1146/annurev-genet-102108-134850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Smith RL, Soeters MR, Wüst RCI, Houtkooper RH. Metabolic flexibility as an adaptation to energy resources and requirements in health and disease. Endocr Rev. 2018;39:489–517. https://doi.org/10.1210/er.2017-00211.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Galgani JE, Moro C, Ravussin E. Metabolic flexibility and insulin resistance. Am J Phys Endocrinol Metab. 2008;295:E1009–17. https://doi.org/10.1152/ajpendo.90558.2008.

    Article  CAS  Google Scholar 

  17. Muoio DM. Metabolic inflexibility: when mitochondrial indecision leads to metabolic gridlock. Cell. 2014;159:1253–62. https://doi.org/10.1016/j.cell.2014.11.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Burke SJ, Batdorf HM, Huang TY, Jackson JW, Jones KA, Martin TM, et al. One week of continuous corticosterone exposure impairs hepatic metabolic flexibility, promotes islet β-cell proliferation, and reduces physical activity in male C57BL/6 J mice. J Steroid Biochem Mol Biol. 2019;195:105468. https://doi.org/10.1016/j.jsbmb.2019.105468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee S, Rivera-Vega M, Alsayed HM, Boesch C, Libman I. Metabolic inflexibility and insulin resistance in obese adolescents with non-alcoholic fatty liver disease. Pediatr Diabetes. 2015;16:211–8. https://doi.org/10.1111/pedi.12141.

    Article  CAS  PubMed  Google Scholar 

  20. Thyfault JP, Rector RS, Noland RC. Metabolic inflexibility in skeletal muscle: a prelude to the cardiometabolic syndrome? Journal of the Cardiometabolic Syndrome. 2006;1:184–9. https://doi.org/10.1111/j.1559-4564.2006.05629.x.

    Article  PubMed  Google Scholar 

  21. Ukropcova B, McNeil M, Sereda O, de Jonge L, Xie H, Bray GA, et al. Dynamic changes in fat oxidation in human primary myocytes mirror metabolic characteristics of the donor. J Clin Invest. 2005;115:1934–41. https://doi.org/10.1172/jci24332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jørgensen W, Rud KA, Mortensen OH, Frandsen L, Grunnet N, Quistorff B. Your mitochondria are what you eat: a high-fat or a high-sucrose diet eliminates metabolic flexibility in isolated mitochondria from rat skeletal muscle. Physiological Reports. 2017;5. https://doi.org/10.14814/phy2.13207.

  23. Medeiros DM. Assessing mitochondria biogenesis. Methods (San Diego, Calif). 2008;46:288–94. https://doi.org/10.1016/j.ymeth.2008.09.026.

    Article  CAS  Google Scholar 

  24. D'Erchia AM, Atlante A, Gadaleta G, Pavesi G, Chiara M, De Virgilio C, et al. Tissue-specific mtDNA abundance from exome data and its correlation with mitochondrial transcription, mass and respiratory activity. Mitochondrion. 2015;20:13–21. https://doi.org/10.1016/j.mito.2014.10.005.

    Article  CAS  PubMed  Google Scholar 

  25. Chiappini F, Barrier A, Saffroy R, Domart MC, Dagues N, Azoulay D, et al. Exploration of global gene expression in human liver steatosis by high-density oligonucleotide microarray. Laboratory Investigation; a journal of technical methods and pathology. 2006;86:154–65. https://doi.org/10.1038/labinvest.3700374.

    Article  CAS  PubMed  Google Scholar 

  26. Larsen S, Nielsen J, Hansen CN, Nielsen LB, Wibrand F, Stride N, et al. Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. J Physiol. 2012;590:3349–60. https://doi.org/10.1113/jphysiol.2012.230185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vigelsø A, Andersen NB, Dela F. The relationship between skeletal muscle mitochondrial citrate synthase activity and whole body oxygen uptake adaptations in response to exercise training. International Journal of Physiology, Pathophysiology and Pharmacology. 2014;6:84–101.

    PubMed  PubMed Central  Google Scholar 

  28. Christe M, Hirzel E, Lindinger A, Kern B, von Flüe M, Peterli R, et al. Obesity affects mitochondrial citrate synthase in human omental adipose tissue. ISRN Obesity. 2013;2013:826027–8. https://doi.org/10.1155/2013/826027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Laye MJ, Rector RS, Warner SO, Naples SP, Perretta AL, Uptergrove GM, et al. Changes in visceral adipose tissue mitochondrial content with type 2 diabetes and daily voluntary wheel running in OLETF rats. J Physiol. 2009;587:3729–39. https://doi.org/10.1113/jphysiol.2009.172601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Koliaki C, Szendroedi J, Kaul K, Jelenik T, Nowotny P, Jankowiak F, et al. Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis. Cell Metab. 2015;21:739–46. https://doi.org/10.1016/j.cmet.2015.04.004.

    Article  CAS  PubMed  Google Scholar 

  31. Lee K, Haddad A, Osme A. Hepatic mitochondrial defects in a nonalcoholic fatty liver disease mouse model are associated with increased degradation of oxidative phosphorylation subunits. 2018;17:2371–86. https://doi.org/10.1074/mcp.RA118.000961.

  32. Koekemoer TC, Oelofsen W. Properties of porcine white adipose tissue and liver mitochondrial subpopulations. Int J Biochem Cell Biol. 2001;33:889–901. https://doi.org/10.1016/s1357-2725(01)00064-4.

    Article  CAS  PubMed  Google Scholar 

  33. Jornayvaz FR, Shulman GI. Regulation of mitochondrial biogenesis. Essays Biochem. 2010;47:69–84. https://doi.org/10.1042/bse0470069.

    Article  CAS  PubMed  Google Scholar 

  34. Scarpulla RC, Vega RB, Kelly DP. Transcriptional integration of mitochondrial biogenesis. Trends Endocrinol Metab. 2012;23:459–66. https://doi.org/10.1016/j.tem.2012.06.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kang D, Kim SH, Hamasaki N. Mitochondrial transcription factor A (TFAM): roles in maintenance of mtDNA and cellular functions. Mitochondrion. 2007;7:39–44. https://doi.org/10.1016/j.mito.2006.11.017.

    Article  CAS  PubMed  Google Scholar 

  36. Lin J, Handschin C, Spiegelman BM. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 2005;1:361–70. https://doi.org/10.1016/j.cmet.2005.05.004.

    Article  CAS  PubMed  Google Scholar 

  37. Gao AW, Cantó C, Houtkooper RH. Mitochondrial response to nutrient availability and its role in metabolic disease. EMBO Mol Med. 2014;6:580–9. https://doi.org/10.1002/emmm.201303782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tang BL. Sirt1 and the mitochondria. Molecules and Cells. 2016;39:87–95. https://doi.org/10.14348/molcells.2016.2318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature. 2005;434:113–8. https://doi.org/10.1038/nature03354.

    Article  CAS  PubMed  Google Scholar 

  40. Fernandez-Marcos PJ, Auwerx J. Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis. The American Journal of Clinical Nutrition. 2011;93:884 s-90. https://doi.org/10.3945/ajcn.110.001917.

    Article  CAS  Google Scholar 

  41. Groennebaek T, Vissing K. Impact of resistance training on skeletal muscle mitochondrial biogenesis, content, and function. Front Physiol. 2017;8:713. https://doi.org/10.3389/fphys.2017.00713.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ashrafi G, Schwarz TL. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ. 2013;20:31–42. https://doi.org/10.1038/cdd.2012.81.

    Article  CAS  PubMed  Google Scholar 

  43. Su Z, Nie Y, Huang X, Zhu Y, Feng B, Tang L, et al. Mitophagy in hepatic insulin resistance: therapeutic potential and concerns. Front Pharmacol. 2019;10:1193. https://doi.org/10.3389/fphar.2019.01193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev. 2014;94:909–50. https://doi.org/10.1152/physrev.00026.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mishra P, Chan DC. Mitochondrial dynamics and inheritance during cell division, development and disease. Nat Rev Mol Cell Biol. 2014;15:634–46. https://doi.org/10.1038/nrm3877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen H, Vermulst M, Wang YE, Chomyn A, Prolla TA, McCaffery JM, et al. Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell. 2010;141:280–9. https://doi.org/10.1016/j.cell.2010.02.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chan DC. Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol. 2006;22:79–99. https://doi.org/10.1146/annurev.cellbio.22.010305.104638.

    Article  CAS  PubMed  Google Scholar 

  48. Gomes LC, Di Benedetto G, Scorrano L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol. 2011;13:589–98. https://doi.org/10.1038/ncb2220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, Walzer G, et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 2008;27:433–46. https://doi.org/10.1038/sj.emboj.7601963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wikstrom JD, Mahdaviani K, Liesa M, Sereda SB, Si Y, Las G, et al. Hormone-induced mitochondrial fission is utilized by brown adipocytes as an amplification pathway for energy expenditure. EMBO J. 2014;33:418–36. https://doi.org/10.1002/embj.201385014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bach D, Pich S, Soriano FX, Vega N, Baumgartner B, Oriola J, et al. Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. A novel regulatory mechanism altered in obesity. J Biol Chem. 2003;278:17190–7. https://doi.org/10.1074/jbc.M212754200.

    Article  PubMed  Google Scholar 

  52. Kelley DE, He J, Menshikova EV, Ritov VB. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes. 2002;51:2944–50. https://doi.org/10.2337/diabetes.51.10.2944.

    Article  CAS  PubMed  Google Scholar 

  53. Schmid AI, Szendroedi J, Chmelik M, Krssák M, Moser E, Roden M. Liver ATP synthesis is lower and relates to insulin sensitivity in patients with type 2 diabetes. Diabetes Care. 2011;34:448–53. https://doi.org/10.2337/dc10-1076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Busiello RA, Savarese S, Lombardi A. Mitochondrial uncoupling proteins and energy metabolism. Front Physiol. 2015;6:36. https://doi.org/10.3389/fphys.2015.00036.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Klaus S, Keipert S, Rossmeisl M, Kopecky J. Augmenting energy expenditure by mitochondrial uncoupling: a role of AMP-activated protein kinase. Genes Nutr. 2012;7:369–86. https://doi.org/10.1007/s12263-011-0260-8.

    Article  CAS  PubMed  Google Scholar 

  56. Keipert S, Voigt A, Klaus S. Dietary effects on body composition, glucose metabolism, and longevity are modulated by skeletal muscle mitochondrial uncoupling in mice. Aging Cell. 2011;10:122–36. https://doi.org/10.1111/j.1474-9726.2010.00648.x.

    Article  CAS  PubMed  Google Scholar 

  57. Adjeitey CN, Mailloux RJ, Dekemp RA, Harper ME. Mitochondrial uncoupling in skeletal muscle by UCP1 augments energy expenditure and glutathione content while mitigating ROS production. Am J Phys Endocrinol Metab. 2013;305:E405–15. https://doi.org/10.1152/ajpendo.00057.2013.

    Article  CAS  Google Scholar 

  58. Hardie DG, Carling D. The AMP-activated protein kinase--fuel gauge of the mammalian cell? Eur J Biochem. 1997;246:259–73. https://doi.org/10.1111/j.1432-1033.1997.00259.x.

    Article  CAS  PubMed  Google Scholar 

  59. Ye X, Li M, Hou T, Gao T, Zhu WG, Yang Y. Sirtuins in glucose and lipid metabolism. Oncotarget. 2017;8:1845–59. https://doi.org/10.18632/oncotarget.12157.

    Article  PubMed  Google Scholar 

  60. Martinez-Reyes I, Chandel NS. Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun. 2020;11:102. https://doi.org/10.1038/s41467-019-13668-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Brehm A, Krssak M, Schmid AI, Nowotny P, Waldhäusl W, Roden M. Increased lipid availability impairs insulin-stimulated ATP synthesis in human skeletal muscle. Diabetes. 2006;55:136–40.

    Article  CAS  Google Scholar 

  62. Chen RH, Maher VM, Brouwer J, van de Putte P, McCormick JJ. Preferential repair and strand-specific repair of benzo[a]pyrene diol epoxide adducts in the HPRT gene of diploid human fibroblasts. Proc Natl Acad Sci U S A. 1992;89:5413–7. https://doi.org/10.1073/pnas.89.12.5413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Valkovič L, Chmelík M, Krššák M. In-vivo 31P-MRS of skeletal muscle and liver: a way for non-invasive assessment of their metabolism. Anal Biochem. 2017;529:193–215. https://doi.org/10.1016/j.ab.2017.01.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Petersen KF, Befroy D, Dufour S, Dziura J, Ariyan C, Rothman DL, et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science (New York, NY). 2003;300:1140–2. https://doi.org/10.1126/science.1082889.

    Article  CAS  Google Scholar 

  65. Oberhaensli RD, Galloway GJ, Taylor DJ, Bore PJ, Radda GK. Assessment of human liver metabolism by phosphorus-31 magnetic resonance spectroscopy. Br J Radiol. 1986;59:695–9. https://doi.org/10.1259/0007-1285-59-703-695.

    Article  CAS  PubMed  Google Scholar 

  66. Nair S, V PC, Arnold C, Diehl AM. Hepatic ATP reserve and efficiency of replenishing: comparison between obese and nonobese normal individuals. Am J Gastroenterol. 2003;98:466–70. https://doi.org/10.1111/j.1572-0241.2003.07221.x.

    Article  CAS  PubMed  Google Scholar 

  67. Bawden SJ, Stephenson MC, Ciampi E, Hunter K, Marciani L, Macdonald IA, et al. Investigating the effects of an oral fructose challenge on hepatic ATP reserves in healthy volunteers: A (31)P MRS study. Clinical Nutrition (Edinburgh, Scotland). 2016;35:645–9. https://doi.org/10.1016/j.clnu.2015.04.001.

    Article  CAS  Google Scholar 

  68. Petersen KF, Dufour S, Shulman GI. Decreased insulin-stimulated ATP synthesis and phosphate transport in muscle of insulin-resistant offspring of type 2 diabetic parents. PLoS Med. 2005;2:e233. https://doi.org/10.1371/journal.pmed.0020233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gnaiger E. Capacity of oxidative phosphorylation in human skeletal muscle: new perspectives of mitochondrial physiology. Int J Biochem Cell Biol. 2009;41:1837–45. https://doi.org/10.1016/j.biocel.2009.03.013.

    Article  CAS  PubMed  Google Scholar 

  70. Ojuka E, Andrew B, Bezuidenhout N, George S, Maarman G, Madlala HP, et al. Measurement of β-oxidation capacity of biological samples by respirometry: a review of principles and substrates. Am J Phys Endocrinol Metab. 2016;310:E715–23. https://doi.org/10.1152/ajpendo.00475.2015.

    Article  Google Scholar 

  71. El-Hafidi M, Franco M, Ramírez AR, Sosa JS, Flores JAP, Acosta OL, et al. Glycine Increases insulin sensitivity and glutathione biosynthesis and protects against oxidative stress in a model of sucrose-induced insulin resistance. Oxidative Med Cell Longev. 2018;2018:2101562–12. https://doi.org/10.1155/2018/2101562.

    Article  CAS  Google Scholar 

  72. Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417:1–13. https://doi.org/10.1042/bj20081386.

    Article  CAS  PubMed  Google Scholar 

  73. Mihalik SJ, Michaliszyn SF, de las Heras J, Bacha F, Lee S, Chace DH, et al. Metabolomic profiling of fatty acid and amino acid metabolism in youth with obesity and type 2 diabetes: evidence for enhanced mitochondrial oxidation. Diabetes Care. 2012;35:605–11. https://doi.org/10.2337/dc11-1577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kelley DE, Goodpaster B, Wing RR, Simoneau JA. Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss. Am J Physiol. 1999;277:E1130–41. https://doi.org/10.1152/ajpendo.1999.277.6.E1130.

    Article  CAS  PubMed  Google Scholar 

  75. Thyfault JP, Kraus RM, Hickner RC, Howell AW, Wolfe RR, Dohm GL. Impaired plasma fatty acid oxidation in extremely obese women. Am J Phys Endocrinol Metab. 2004;287:E1076–81. https://doi.org/10.1152/ajpendo.00177.2004.

    Article  CAS  Google Scholar 

  76. Larson-Meyer DE, Newcomer BR, Hunter GR, McLean JE, Hetherington HP, Weinsier RL. Effect of weight reduction, obesity predisposition, and aerobic fitness on skeletal muscle mitochondrial function. Am J Phys Endocrinol Metab. 2000;278:E153–61. https://doi.org/10.1152/ajpendo.2000.278.1.E153.

    Article  CAS  Google Scholar 

  77. Newcomer BR, Larson-Meyer DE, Hunter GR, Weinsier RL. Skeletal muscle metabolism in overweight and post-overweight women: an isometric exercise study using (31)P magnetic resonance spectroscopy. International Journal of Obesity and Related Metabolic Disorders: journal of the International Association for the Study of Obesity. 2001;25:1309–15. https://doi.org/10.1038/sj.ijo.0801673.

    Article  CAS  Google Scholar 

  78. Wells GD, Banks L, Caterini JE, Thompson S, Noseworthy MD, Rayner T, et al. The association among skeletal muscle phosphocreatine recovery, adiposity, and insulin resistance in children. Pediatr Obes. 2017;12:163–70. https://doi.org/10.1111/ijpo.12123.

    Article  PubMed  Google Scholar 

  79. Fleischman A, Kron M, Systrom DM, Hrovat M, Grinspoon SK. Mitochondrial function and insulin resistance in overweight and normal-weight children. J Clin Endocrinol Metab. 2009;94:4923–30. https://doi.org/10.1210/jc.2009-1590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cree-Green M, Wiromrat P, Stuppy JJ, Thurston J, Bergman BC, Baumgartner AD, et al. Muscle insulin resistance in youth with obesity and normoglycemia is associated with altered fat metabolism. Obesity (Silver Spring, Md). 2019;27:2046–54. https://doi.org/10.1002/oby.22658.

    Article  CAS  Google Scholar 

  81. Slattery MJ, Bredella MA, Thakur H, Torriani M, Misra M. Insulin resistance and impaired mitochondrial function in obese adolescent girls. Metab Syndr Relat Disord. 2014;12:56–61. https://doi.org/10.1089/met.2013.0100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cree-Green M, Gupta A, Coe GV, Baumgartner AD, Pyle L, Reusch JE, et al. Insulin resistance in type 2 diabetes youth relates to serum free fatty acids and muscle mitochondrial dysfunction. J Diabetes Complicat. 2017;31:141–8. https://doi.org/10.1016/j.jdiacomp.2016.10.014.

    Article  Google Scholar 

  83. Fritsch M, Koliaki C, Livingstone R, Phielix E, Bierwagen A, Meisinger M, et al. Time course of postprandial hepatic phosphorus metabolites in lean, obese, and type 2 diabetes patients. Am J Clin Nutr. 2015;102:1051–8. https://doi.org/10.3945/ajcn.115.107599.

    Article  CAS  PubMed  Google Scholar 

  84. Iozzo P, Bucci M, Roivainen A, Någren K, Järvisalo MJ, Kiss J, et al. Fatty acid metabolism in the liver, measured by positron emission tomography, is increased in obese individuals. Gastroenterology. 2010;139:846-56, 56.e1-6. https://doi.org/10.1053/j.gastro.2010.05.039.

    Article  CAS  Google Scholar 

  85. Wells GD, Noseworthy MD, Hamilton J, Tarnopolski M, Tein I. Skeletal muscle metabolic dysfunction in obesity and metabolic syndrome. The Canadian Journal of Neurological Sciences Le journal canadien des sciences neurologiques. 2008;35:31–40. https://doi.org/10.1017/s0317167100007538.

    Article  PubMed  Google Scholar 

  86. D'Adamo E, Caprio S. Type 2 diabetes in youth: epidemiology and pathophysiology. Diabetes Care. 2011;34(Suppl 2):S161–5. https://doi.org/10.2337/dc11-s212.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Perumpail BJ, Khan MA, Yoo ER, Cholankeril G, Kim D, Ahmed A. Clinical epidemiology and disease burden of nonalcoholic fatty liver disease. World J Gastroenterol. 2017;23:8263–76. https://doi.org/10.3748/wjg.v23.i47.8263.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Meex RC, Schrauwen-Hinderling VB, Moonen-Kornips E, Schaart G, Mensink M, Phielix E, et al. Restoration of muscle mitochondrial function and metabolic flexibility in type 2 diabetes by exercise training is paralleled by increased myocellular fat storage and improved insulin sensitivity. Diabetes. 2010;59:572–9. https://doi.org/10.2337/db09-1322.

    Article  CAS  PubMed  Google Scholar 

  89. Ripley EM, Clarke GD, Hamidi V, Martinez RA, Settles FD, Solis C, et al. Reduced skeletal muscle phosphocreatine concentration in type 2 diabetic patients: a quantitative image-based phosphorus-31 MR spectroscopy study. Am J Phys Endocrinol Metab. 2018;315:E229–e39. https://doi.org/10.1152/ajpendo.00426.2017.

    Article  CAS  Google Scholar 

  90. Szendroedi J, Schmid AI, Chmelik M, Toth C, Brehm A, Krssak M, et al. Muscle mitochondrial ATP synthesis and glucose transport/phosphorylation in type 2 diabetes. PLoS Med. 2007;4:e154. https://doi.org/10.1371/journal.pmed.0040154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. van de Weijer T, Sparks LM, Phielix E, Meex RC, van Herpen NA, Hesselink MK, et al. Relationships between mitochondrial function and metabolic flexibility in type 2 diabetes mellitus. PLoS One. 2013;8:e51648. https://doi.org/10.1371/journal.pone.0051648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chomentowski P, Coen PM, Radiková Z, Goodpaster BH, Toledo FG. Skeletal muscle mitochondria in insulin resistance: differences in intermyofibrillar versus subsarcolemmal subpopulations and relationship to metabolic flexibility. J Clin Endocrinol Metab. 2011;96:494–503. https://doi.org/10.1210/jc.2010-0822.

    Article  CAS  PubMed  Google Scholar 

  93. Phielix E, Schrauwen-Hinderling VB, Mensink M, Lenaers E, Meex R, Hoeks J, et al. Lower intrinsic ADP-stimulated mitochondrial respiration underlies in vivo mitochondrial dysfunction in muscle of male type 2 diabetic patients. Diabetes. 2008;57:2943–9. https://doi.org/10.2337/db08-0391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. De Feyter HM, van den Broek NM, Praet SF, Nicolay K, van Loon LJ, Prompers JJ. Early or advanced stage type 2 diabetes is not accompanied by in vivo skeletal muscle mitochondrial dysfunction. Eur J Endocrinol. 2008;158:643–53. https://doi.org/10.1530/eje-07-0756.

    Article  PubMed  Google Scholar 

  95. Trenell MI, Hollingsworth KG, Lim EL, Taylor R. Increased daily walking improves lipid oxidation without changes in mitochondrial function in type 2 diabetes. Diabetes Care. 2008;31:1644–9. https://doi.org/10.2337/dc08-0303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Larsen S, Ara I, Rabøl R, Andersen JL, Boushel R, Dela F, et al. Are substrate use during exercise and mitochondrial respiratory capacity decreased in arm and leg muscle in type 2 diabetes? Diabetologia. 2009;52:1400–8. https://doi.org/10.1007/s00125-009-1353-4.

    Article  CAS  PubMed  Google Scholar 

  97. Bajpeyi S, Pasarica M, Moro C, Conley K, Jubrias S, Sereda O, et al. Skeletal muscle mitochondrial capacity and insulin resistance in type 2 diabetes. J Clin Endocrinol Metab. 2011;96:1160–8. https://doi.org/10.1210/jc.2010-1621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Apostolopoulou M, Strassburger K, Herder C, Knebel B, Kotzka J, Szendroedi J, et al. Metabolic flexibility and oxidative capacity independently associate with insulin sensitivity in individuals with newly diagnosed type 2 diabetes. Diabetologia. 2016;59:2203–7. https://doi.org/10.1007/s00125-016-4038-9.

    Article  CAS  PubMed  Google Scholar 

  99. Corpeleijn E, Mensink M, Kooi ME, Roekaerts PM, Saris WH, Blaak EE. Impaired skeletal muscle substrate oxidation in glucose-intolerant men improves after weight loss. Obesity (Silver Spring, Md). 2008;16:1025–32. https://doi.org/10.1038/oby.2008.24.

    Article  CAS  Google Scholar 

  100. Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med. 2004;350:664–71. https://doi.org/10.1056/NEJMoa031314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ukropcova B, Sereda O, de Jonge L, Bogacka I, Nguyen T, Xie H, et al. Family history of diabetes links impaired substrate switching and reduced mitochondrial content in skeletal muscle. Diabetes. 2007;56:720–7. https://doi.org/10.2337/db06-0521.

    Article  CAS  PubMed  Google Scholar 

  102. Brøns C, Jensen CB, Storgaard H, Alibegovic A, Jacobsen S, Nilsson E, et al. Mitochondrial function in skeletal muscle is normal and unrelated to insulin action in young men born with low birth weight. J Clin Endocrinol Metab. 2008;93:3885–92. https://doi.org/10.1210/jc.2008-0630.

    Article  CAS  PubMed  Google Scholar 

  103. Mensink M, Blaak EE, van Baak MA, Wagenmakers AJ, Saris WH. Plasma free Fatty Acid uptake and oxidation are already diminished in subjects at high risk for developing type 2 diabetes. Diabetes. 2001;50:2548–54. https://doi.org/10.2337/diabetes.50.11.2548.

    Article  CAS  PubMed  Google Scholar 

  104. Cree-Green M, Newcomer BR, Brown MS, Baumgartner AD, Bergman B, Drew B, et al. Delayed skeletal muscle mitochondrial ADP recovery in youth with type 1 diabetes relates to muscle insulin resistance. Diabetes. 2015;64:383–92. https://doi.org/10.2337/db14-0765.

    Article  CAS  PubMed  Google Scholar 

  105. Crowther GJ, Milstein JM, Jubrias SA, Kushmerick MJ, Gronka RK, Conley KE. Altered energetic properties in skeletal muscle of men with well-controlled insulin-dependent (type 1) diabetes. Am J Phys Endocrinol Metab. 2003;284:E655–62. https://doi.org/10.1152/ajpendo.00343.2002.

    Article  CAS  Google Scholar 

  106. Kacerovsky M, Brehm A, Chmelik M, Schmid AI, Szendroedi J, Kacerovsky-Bielesz G, et al. Impaired insulin stimulation of muscular ATP production in patients with type 1 diabetes. J Intern Med. 2011;269:189–99. https://doi.org/10.1111/j.1365-2796.2010.02298.x.

    Article  CAS  PubMed  Google Scholar 

  107. Sleigh A, Raymond-Barker P, Thackray K, Porter D, Hatunic M, Vottero A, et al. Mitochondrial dysfunction in patients with primary congenital insulin resistance. J Clin Invest. 2011;121:2457–61. https://doi.org/10.1172/jci46405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Szendroedi J, Chmelik M, Schmid AI, Nowotny P, Brehm A, Krssak M, et al. Abnormal hepatic energy homeostasis in type 2 diabetes. Hepatology (Baltimore, Md). 2009;50:1079–86. https://doi.org/10.1002/hep.23093.

    Article  CAS  Google Scholar 

  109. Abdelmalek MF, Lazo M, Horska A, Bonekamp S, Lipkin EW, Balasubramanyam A, et al. Higher dietary fructose is associated with impaired hepatic adenosine triphosphate homeostasis in obese individuals with type 2 diabetes. Hepatology (Baltimore, Md). 2012;56:952–60. https://doi.org/10.1002/hep.25741.

    Article  CAS  Google Scholar 

  110. Petersen MC, Shulman GI. Mechanisms of insulin action and insulin resistance. Physiol Rev. 2018;98:2133–223. https://doi.org/10.1152/physrev.00063.2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Schrauwen-Hinderling VB, Kooi ME, Hesselink MK, Jeneson JA, Backes WH, van Echteld CJ, et al. Impaired in vivo mitochondrial function but similar intramyocellular lipid content in patients with type 2 diabetes mellitus and BMI-matched control subjects. Diabetologia. 2007;50:113–20. https://doi.org/10.1007/s00125-006-0475-1.

    Article  CAS  PubMed  Google Scholar 

  112. Yki-Järvinen H, Koivisto VA. Natural course of insulin resistance in type I diabetes. N Engl J Med. 1986;315:224–30. https://doi.org/10.1056/nejm198607243150404.

    Article  PubMed  Google Scholar 

  113. Brunt EM. Nonalcoholic steatohepatitis. Semin Liver Dis. 2004;24:3–20. https://doi.org/10.1055/s-2004-823098.

    Article  PubMed  Google Scholar 

  114. Schuppan D, Schattenberg JM. Non-alcoholic steatohepatitis: pathogenesis and novel therapeutic approaches. J Gastroenterol Hepatol. 2013;28(Suppl 1):68–76. https://doi.org/10.1111/jgh.12212.

    Article  CAS  PubMed  Google Scholar 

  115. Divella R, Mazzocca A, Daniele A, Sabbà C, Paradiso A. Obesity, nonalcoholic fatty liver disease and adipocytokines network in promotion of cancer. Int J Biol Sci. 2019;15:610–6. https://doi.org/10.7150/ijbs.29599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Younossi ZM, Golabi P, de Avila L, Paik JM, Srishord M, Fukui N, et al. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: a systematic review and meta-analysis. J Hepatol. 2019;71:793–801. https://doi.org/10.1016/j.jhep.2019.06.021.

    Article  PubMed  Google Scholar 

  117. Wong VW, Wong GL, Yeung JC, Fung CY, Chan JK, Chang ZH, et al. Long-term clinical outcomes after fatty liver screening in patients undergoing coronary angiogram: a prospective cohort study. Hepatology (Baltimore, Md). 2016;63:754–63. https://doi.org/10.1002/hep.28253.

    Article  Google Scholar 

  118. Targher G, Bertolini L, Padovani R, Rodella S, Tessari R, Zenari L, et al. Prevalence of nonalcoholic fatty liver disease and its association with cardiovascular disease among type 2 diabetic patients. Diabetes Care. 2007;30:1212–8. https://doi.org/10.2337/dc06-2247.

    Article  PubMed  Google Scholar 

  119. Wong VW, Wong GL, Yip GW, Lo AO, Limquiaco J, Chu WC, et al. Coronary artery disease and cardiovascular outcomes in patients with non-alcoholic fatty liver disease. Gut. 2011;60:1721–7. https://doi.org/10.1136/gut.2011.242016.

    Article  CAS  PubMed  Google Scholar 

  120. Samantha M, Elisa M, Db D, Francesco P, Cristina R, Yvelise F. Impaired fat oxidation and reduced resting energy expenditure after a fat load in individuals with liver steatosis. J Nutr Food Sci. 2018;8:1–7. https://doi.org/10.4172/2155-9600.1000665.

    Article  Google Scholar 

  121. Fletcher JA, Deja S, Satapati S, Fu X, Burgess SC, Browning JD. Impaired ketogenesis and increased acetyl-CoA oxidation promote hyperglycemia in human fatty liver. JCI Insight. 2019;5. https://doi.org/10.1172/jci.insight.127737.

  122. Croci I, Byrne NM, Choquette S, Hills AP, Chachay VS, Clouston AD, et al. Whole-body substrate metabolism is associated with disease severity in patients with non-alcoholic fatty liver disease. Gut. 2013;62:1625–33. https://doi.org/10.1136/gutjnl-2012-302789.

    Article  CAS  PubMed  Google Scholar 

  123. Cortez-Pinto H, Chatham J, Chacko VP, Arnold C, Rashid A, Diehl AM. Alterations in liver ATP homeostasis in human nonalcoholic steatohepatitis: a pilot study. JAMA. 1999;282:1659–64. https://doi.org/10.1001/jama.282.17.1659.

    Article  CAS  PubMed  Google Scholar 

  124. Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest. 2005;115:1343–51. https://doi.org/10.1172/jci23621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Sears B, Perry M. The role of fatty acids in insulin resistance. Lipids Health Dis. 2015;14:121. https://doi.org/10.1186/s12944-015-0123-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Reddavide R, Cisternino AM, Inguaggiato R, Rotolo O, Zinzi I, Veronese N, et al. Non-alcoholic fatty liver disease is associated with higher metabolic expenditure in overweight and obese subjects: a case-control study. Nutrients. 2019;11. https://doi.org/10.3390/nu11081830.

  127. Miele L, Grieco A, Armuzzi A, Candelli M, Forgione A, Gasbarrini A, et al. Hepatic mitochondrial beta-oxidation in patients with nonalcoholic steatohepatitis assessed by 13C-octanoate breath test. Am J Gastroenterol. 2003;98:2335–6. https://doi.org/10.1111/j.1572-0241.2003.07725.x.

    Article  PubMed  Google Scholar 

  128. Kotronen A, Seppälä-Lindroos A, Vehkavaara S, Bergholm R, Frayn KN, Fielding BA, et al. Liver fat and lipid oxidation in humans. Liver International: official journal of the International Association for the Study of the Liver. 2009;29:1439–46. https://doi.org/10.1111/j.1478-3231.2009.02076.x.

    Article  CAS  Google Scholar 

  129. Patterson RE, Kalavalapalli S, Williams CM, Nautiyal M, Mathew JT, Martinez J, et al. Lipotoxicity in steatohepatitis occurs despite an increase in tricarboxylic acid cycle activity. Am J Phys Endocrinol Metab. 2016;310:E484–94. https://doi.org/10.1152/ajpendo.00492.2015.

    Article  Google Scholar 

  130. Satapati S, Sunny NE, Kucejova B, Fu X, He TT, Mendez-Lucas A, et al. Elevated TCA cycle function in the pathology of diet-induced hepatic insulin resistance and fatty liver. J Lipid Res. 2012;53:1080–92. https://doi.org/10.1194/jlr.M023382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Sunny NE, Parks EJ, Browning JD, Burgess SC. Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic fatty liver disease. Cell Metab. 2011;14:804–10. https://doi.org/10.1016/j.cmet.2011.11.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Petersen KF, Befroy DE, Dufour S, Rothman DL, Shulman GI. Assessment of hepatic mitochondrial oxidation and pyruvate cycling in NAFLD by (13)C magnetic resonance spectroscopy. Cell Metab. 2016;24:167–71. https://doi.org/10.1016/j.cmet.2016.06.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Befroy DE, Perry RJ, Jain N, Dufour S, Cline GW, Trimmer JK, et al. Direct assessment of hepatic mitochondrial oxidative and anaplerotic fluxes in humans using dynamic 13C magnetic resonance spectroscopy. Nat Med. 2014;20:98–102. https://doi.org/10.1038/nm.3415.

    Article  CAS  PubMed  Google Scholar 

  134. Hyötyläinen T, Jerby L, Petäjä EM, Mattila I, Jäntti S, Auvinen P, et al. Genome-scale study reveals reduced metabolic adaptability in patients with non-alcoholic fatty liver disease. Nat Commun. 2016;7:8994. https://doi.org/10.1038/ncomms9994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Pérez-Carreras M, Del Hoyo P, Martín MA, Rubio JC, Martín A, Castellano G, et al. Defective hepatic mitochondrial respiratory chain in patients with nonalcoholic steatohepatitis. Hepatology (Baltimore, Md). 2003;38:999–1007. https://doi.org/10.1053/jhep.2003.50398.

    Article  CAS  Google Scholar 

  136. Sanyal AJ, Campbell-Sargent C, Mirshahi F, Rizzo WB, Contos MJ, Sterling RK, et al. Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. Gastroenterology. 2001;120:1183–92. https://doi.org/10.1053/gast.2001.23256.

    Article  CAS  PubMed  Google Scholar 

  137. Chavin KD, Yang S, Lin HZ, Chatham J, Chacko VP, Hoek JB, et al. Obesity induces expression of uncoupling protein-2 in hepatocytes and promotes liver ATP depletion. J Biol Chem. 1999;274:5692–700. https://doi.org/10.1074/jbc.274.9.5692.

    Article  CAS  PubMed  Google Scholar 

  138. Cortez-Pinto H, Zhi Lin H, Qi Yang S, Odwin Da Costa S, Diehl AM. Lipids up-regulate uncoupling protein 2 expression in rat hepatocytes. Gastroenterology. 1999;116:1184–93. https://doi.org/10.1016/s0016-5085(99)70022-3.

    Article  CAS  PubMed  Google Scholar 

  139. Serviddio G, Bellanti F, Tamborra R, Rollo T, Capitanio N, Romano AD, et al. Uncoupling protein-2 (UCP2) induces mitochondrial proton leak and increases susceptibility of non-alcoholic steatohepatitis (NASH) liver to ischaemia-reperfusion injury. Gut. 2008;57:957–65. https://doi.org/10.1136/gut.2007.147496.

    Article  CAS  PubMed  Google Scholar 

  140. Cheng Z, Tseng Y, White MF. Insulin signaling meets mitochondria in metabolism. Trends Endocrinol Metab. 2010;21:589–98. https://doi.org/10.1016/j.tem.2010.06.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Cheng Z, Guo S, Copps K, Dong X, Kollipara R, Rodgers JT, et al. Foxo1 integrates insulin signaling with mitochondrial function in the liver. Nat Med. 2009;15:1307–11. https://doi.org/10.1038/nm.2049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Long YC, Cheng Z, Copps KD, White MF. Insulin receptor substrates Irs1 and Irs2 coordinate skeletal muscle growth and metabolism via the Akt and AMPK pathways. Mol Cell Biol. 2011;31:430–41. https://doi.org/10.1128/mcb.00983-10.

    Article  CAS  PubMed  Google Scholar 

  143. Liu S, Okada T, Assmann A, Soto J, Liew CW, Bugger H, et al. Insulin signaling regulates mitochondrial function in pancreatic beta-cells. PLoS One. 2009;4:e7983. https://doi.org/10.1371/journal.pone.0007983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Michael MD, Kulkarni RN, Postic C, Previs SF, Shulman GI, Magnuson MA, et al. Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol Cell. 2000;6:87–97.

    Article  CAS  Google Scholar 

  145. Sokolowska E, Blachnio-Zabielska A. The role of ceramides in insulin resistance. Front Endocrinol. 2019;10:577. https://doi.org/10.3389/fendo.2019.00577.

    Article  Google Scholar 

  146. Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev. 2002;23:599–622. https://doi.org/10.1210/er.2001-0039.

    Article  CAS  PubMed  Google Scholar 

  147. Bonnard C, Durand A, Peyrol S, Chanseaume E, Chauvin MA, Morio B, et al. Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice. J Clin Invest. 2008;118:789–800. https://doi.org/10.1172/jci32601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Loh K, Deng H, Fukushima A, Cai X, Boivin B, Galic S, et al. Reactive oxygen species enhance insulin sensitivity. Cell Metab. 2009;10:260–72. https://doi.org/10.1016/j.cmet.2009.08.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Guilherme A, Virbasius JV, Puri V, Czech MP. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol. 2008;9:367–77. https://doi.org/10.1038/nrm2391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Petrick HL, Foley KP, Zlitni S, Brunetta HS, Paglialunga S, Miotto PM, et al. Adipose tissue inflammation is directly linked to obesity-induced insulin resistance, while gut dysbiosis and mitochondrial dysfunction are not required. Function. 2020;1. https://doi.org/10.1093/function/zqaa013.

  151. Woo CY, Jang JE, Lee SE, Koh EH, Lee KU. Mitochondrial dysfunction in adipocytes as a primary cause of adipose tissue inflammation, vol. 43; 2019. p. 247–56. https://doi.org/10.4093/dmj.2018.0221.

    Book  Google Scholar 

  152. Satapati S, Kucejova B, Duarte JA, Fletcher JA, Reynolds L, Sunny NE, et al. Mitochondrial metabolism mediates oxidative stress and inflammation in fatty liver. J Clin Invest. 2015;125:4447–62. https://doi.org/10.1172/jci82204.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Lambert JE, Ramos-Roman MA, Browning JD, Parks EJ. Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology. 2014;146:726–35. https://doi.org/10.1053/j.gastro.2013.11.049.

    Article  CAS  PubMed  Google Scholar 

  154. Alves-Bezerra M, Cohen DE. Triglyceride metabolism in the liver. Comprehensive Physiology. 2017;8:1–8. https://doi.org/10.1002/cphy.c170012.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Petersen MC, Shulman GI. Roles of diacylglycerols and ceramides in hepatic insulin resistance. Trends Pharmacol Sci. 2017;38:649–65. https://doi.org/10.1016/j.tips.2017.04.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Gudz TI, Tserng KY, Hoppel CL. Direct inhibition of mitochondrial respiratory chain complex III by cell-permeable ceramide. J Biol Chem. 1997;272:24154–8. https://doi.org/10.1074/jbc.272.39.24154.

    Article  CAS  PubMed  Google Scholar 

  157. Pagadala M, Kasumov T, McCullough AJ, Zein NN, Kirwan JP. Role of ceramides in nonalcoholic fatty liver disease. Trends Endocrinol Metab. 2012;23:365–71. https://doi.org/10.1016/j.tem.2012.04.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Reali F, Morine MJ, Kahramanoğulları O, Raichur S, Schneider HC, Crowther D, et al. Mechanistic interplay between ceramide and insulin resistance. Sci Rep. 2017;7:41231. https://doi.org/10.1038/srep41231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Ter Horst KW, Gilijamse PW, Versteeg RI, Ackermans MT, Nederveen AJ, la Fleur SE, et al. Hepatic diacylglycerol-associated protein kinase Cε translocation links hepatic steatosis to hepatic insulin resistance in humans. Cell Rep. 2017;19:1997–2004. https://doi.org/10.1016/j.celrep.2017.05.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Chen Z, Yu R, Xiong Y, Du F, Zhu S. A vicious circle between insulin resistance and inflammation in nonalcoholic fatty liver disease. Lipids Health Dis. 2017;16:203. https://doi.org/10.1186/s12944-017-0572-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Anello M, Lupi R, Spampinato D, Piro S, Masini M, Boggi U, et al. Functional and morphological alterations of mitochondria in pancreatic beta cells from type 2 diabetic patients. Diabetologia. 2005;48:282–9. https://doi.org/10.1007/s00125-004-1627-9.

    Article  CAS  PubMed  Google Scholar 

  162. Haythorne E, Rohm M. Diabetes causes marked inhibition of mitochondrial metabolism in pancreatic β-cells. 2019;10:2474. https://doi.org/10.1038/s41467-019-10189-x.

  163. Copps KD, White MF. Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia. 2012;55:2565–82. https://doi.org/10.1007/s00125-012-2644-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Keildson S, Fadista J, Ladenvall C, Hedman AK, Elgzyri T, Small KS, et al. Expression of phosphofructokinase in skeletal muscle is influenced by genetic variation and associated with insulin sensitivity. Diabetes. 2014;63:1154–65. https://doi.org/10.2337/db13-1301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios Tsilingiris.

Ethics declarations

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Conflict of Interest

All authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Metabolism

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsilingiris, D., Tzeravini, E., Koliaki, C. et al. The Role of Mitochondrial Adaptation and Metabolic Flexibility in the Pathophysiology of Obesity and Insulin Resistance: an Updated Overview. Curr Obes Rep 10, 191–213 (2021). https://doi.org/10.1007/s13679-021-00434-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13679-021-00434-0

Keywords

Navigation