Skip to main content

Advertisement

Log in

The Role of Adipokines in Breast Cancer: Current Evidence and Perspectives

  • Metabolism (M Dalamaga, Section Editor)
  • Published:
Current Obesity Reports Aims and scope Submit manuscript

Abstract

Purpose

The current review shows evidence for the role of adipokines in breast cancer (BC) pathogenesis summarizing the mechanisms underlying the association between adipokines and breast malignancy. Special emphasis is given also on intriguing insights into the relationship between obesity and BC as well as on the role of novel adipokines in BC development.

Recent Findings

Recent evidence has underscored the role of the triad of obesity, insulin resistance, and adipokines in postmenopausal BC. Adipokines exert independent and joint effects on activation of major intracellular signal networks implicated in BC cell proliferation, growth, survival, invasion, and metastasis, particularly in the context of obesity, considered a systemic endocrine dysfunction characterized by chronic inflammation. To date, more than 10 adipokines have been linked to BC, and this catalog is continuously increasing. The majority of circulating adipokines, such as leptin, resistin, visfatin, apelin, lipocalin 2, osteopontin, and oncostatin M, is elevated in BC, while some adipokines such as adiponectin and irisin (adipo-myokine) are generally decreased in BC and considered protective against breast carcinogenesis.

Summary

Further evidence from basic and translational research is necessary to delineate the ontological role of adipokines and their interplay in BC pathogenesis. More large-scale clinical and longitudinal studies are awaited to assess their clinical utility in BC prognosis and follow-up. Finally, novel more effective and safer adipokine-centered therapeutic strategies could pave the way for targeted oncotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ACC:

Acetyl-coA carboxylase

ADSCs:

Adipose-derived mesenchymal stem cells

AdipoR1/R2:

adiponectin receptor 1/ 2

Akt: v-:

Akt murine thymoma viral oncogene homolog

AMPK:

5′ AMP-activated protein kinase

APPL1:

Adaptor protein phosphotyrosine interacting with PH domain and leucine zipper 1

bax:

Bcl-2 associated X protein

BC:

breast cancer

bcl-xL:

B cell lymphoma-extra large

BMI:

Body mass index

CAP1:

Adenylyl cyclase–associated protein 1

CPT1B:

Carnitine palmitoyltransferase 1B

CSC:

Cancer stem cell

c-Src:

Proto-oncogene tyrosine-proteine kinase Src

DM:

Diabetes mellitus

EMT:

Epithelial-mesenchymal transition

eNampt::

Extracellular nicotinamide phosphoribosyl-transferase (eNampt)

ER:

Estrogen receptor

ERK 1/2:

Extracellular signal-regulated kinase 1/2

FAO:

Fatty acid b-oxidation

FASN:

Fatty acid synthase

GRP78:

Glucose-regulated protein 78

GTP:

Guanosine-5′-triphosphate

HER:

Human epidermal growth factor receptor

HIF-1a:

Hypoxia-inducible factor-1a

HR:

Hormone receptor

HRT:

Hormone replacement therapy

hsCRP:

High-sensitive C-reactive protein

IL:

Interleukin

IARC:

International Agency for Research on Cancer

IGF:

Insulin-like growth factor

IRS:

Insulin receptor substrate

JAK:

Janus kinase

JNK:

Jun N-terminal kinase

MAPK:

Mitogen-activated protein kinase

MMTV:

Mammary tumor virus

Lcn2:

Lipocalin 2

LEPR:

Leptin receptor

LIFR:

Leukemia inhibitory receptor

LKB1:

else known as STK11 (serine/threonine kinase 11)

MCF-7:

Michigan Cancer Foundation 7

miR:

Micro-RNA

MMP:

Matrix metalloproteinase

mTOR:

Mammalian target of rapamycin

MO25:

Scaffolding mouse 25 protein

NAD:

Nicotinamide adenine dinucleotide

Nampt:

Nicotinamide phosphoribosyl-transferase

NF-κB:

nuclear factor-κB

NGAL:

Neutrophil gelatinase–associated lipocalin

NILCO:

Notch, IL-1, and leptin

OPN:

Osteopontin

OSM:

Oncostatin M

OSMR:

OSM receptor II

OR:

Odds ratio

PBEF:

pre-B cell colony–enhancing factor

PI3K:

Phosphatidylinositol 3-kinase

PPAR:

Peroxisome proliferator–activated receptors

PR:

Progesterone receptor

RBP-4:

Retinol-binding protein

ROCK:

Rho-associated coiled coil-containing protein kinase

SHBG:

Sex hormone–binding globulin

SIRT1:

Sirtuin 1

SMD:

Standardized mean difference

STAT:

Signal transducer and activator of transcription

STRA6:

Stimulated by retinoic acid 6

STRAD:

STE20-related adaptor protein

TLR:

Toll-like receptor

TNF-α:

Tumor necrosis factor-α

VCAM-1:

Vascular cellular adhesion molecule-1

VEGF:

Vascular endothelial growth factor

Wnt:

Wingless-related integration site

WC:

Waist circumference

WHR:

Waist-to hip ratio

WCRF/AICR:

World Cancer Research Fund/American Institute for Cancer Research

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. The state of cancer care in America. 2014: a report by the American Society of Clinical Oncology. J Oncol Pract. 2014;10:119–42. https://doi.org/10.1200/jop.2014.001386.

    Article  Google Scholar 

  2. Pischon T, Nimptsch K. Obesity and risk of cancer: an introductory overview. Recent Results Cancer Res. 2016;208:1–15. https://doi.org/10.1007/978-3-319-42542-9_1.

    Article  CAS  PubMed  Google Scholar 

  3. Sung H, Siegel RL, Torre LA, Pearson-Stuttard J, Islami F, Fedewa SA, et al. Global patterns in excess body weight and the associated cancer burden. CA Cancer J Clin. 2019;69:88–112. https://doi.org/10.3322/caac.21499.

    Article  PubMed  Google Scholar 

  4. Kelly T, Yang W, Chen CS, Reynolds K, He J. Global burden of obesity in 2005 and projections to 2030. Int J Obes. 2008;32:1431–7. https://doi.org/10.1038/ijo.2008.102.

    Article  CAS  Google Scholar 

  5. Lauby-Secretan B, Scoccianti C, Loomis D, Grosse Y, Bianchini F, Straif K. Body fatness and cancer--viewpoint of the IARC Working Group. N Engl J Med. 2016;375:794–8. https://doi.org/10.1056/NEJMsr1606602.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69:7–34. https://doi.org/10.3322/caac.21551.

    Article  PubMed  Google Scholar 

  7. Miller KD, Siegel RL, Lin CC, Mariotto AB, Kramer JL, Rowland JH, et al. Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin. 2016;66:271–89. https://doi.org/10.3322/caac.21349.

    Article  PubMed  Google Scholar 

  8. Pearson-Stuttard J, Zhou B, Kontis V, Bentham J, Gunter MJ, Ezzati M. Worldwide burden of cancer attributable to diabetes and high body-mass index: a comparative risk assessment. Lancet Diabetes Endocrinol. 2018;6:e6–e15. https://doi.org/10.1016/s2213-8587(18)30150-5.

    Article  PubMed  PubMed Central  Google Scholar 

  9. •• Spyrou N, Avgerinos KI, Mantzoros CS, Dalamaga M. Classic and novel adipocytokines at the intersection of obesity and cancer: diagnostic and therapeutic strategies. Curr Obes Rep. 2018;7:260–75. https://doi.org/10.1007/s13679-018-0318-7This review summarizes the association of classic and novel adipokines with cancer giving special emphasis on mechanisms of action and clinical studies.

    Article  PubMed  Google Scholar 

  10. •• Avgerinos KI, Spyrou N, Mantzoros CS, Dalamaga M. Obesity and cancer risk: emerging biological mechanisms and perspectives. Metabolism. 2019;92:121–35. https://doi.org/10.1016/j.metabol.2018.11.001This review shows evidence for the association between obesity and cancer underscoring the role of emerging biological mechanisms.

    Article  CAS  PubMed  Google Scholar 

  11. Allott EH, Hursting SD. Obesity and cancer: mechanistic insights from transdisciplinary studies. Endocr Relat Cancer. 2015;22:R365–86. https://doi.org/10.1530/erc-15-0400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Canchola AJ, Anton-Culver H, Bernstein L, Clarke CA, Henderson K, Ma H, et al. Body size and the risk of postmenopausal breast cancer subtypes in the California Teachers Study cohort. Cancer Causes Control. 2012. https://doi.org/10.1007/s10552-012-9897-x.

    Article  Google Scholar 

  13. •• Picon-Ruiz M, Morata-Tarifa C, Valle-Goffin JJ, Friedman ER, Slingerland JM. Obesity and adverse breast cancer risk and outcome: mechanistic insights and strategies for intervention. CA Cancer J Clin. 2017;67:378–97. https://doi.org/10.3322/caac.21405This review summarizes the relationships between obesity and breast cancer development and addresses implicated molecular mechanistic insights and strategies for intervention.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Munsell MF, Sprague BL, Berry DA, Chisholm G, Trentham-Dietz A. Body mass index and breast cancer risk according to postmenopausal estrogen-progestin use and hormone receptor status. Epidemiol Rev. 2014;36:114–36. https://doi.org/10.1093/epirev/mxt010.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rosner B, Eliassen AH, Toriola AT, Chen WY, Hankinson SE, Willett WC, et al. Weight and weight changes in early adulthood and later breast cancer risk. Int J Cancer. 2017;140:2003–14. https://doi.org/10.1002/ijc.30627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Iyengar NM, Arthur R, Manson JE, Chlebowski RT, Kroenke CH, Peterson L, et al. Association of body fat and risk of breast cancer in postmenopausal women with normal body mass index: a secondary analysis of a Randomized Clinical Trial and Observational Study. JAMA Oncol. 2018. https://doi.org/10.1001/jamaoncol.2018.5327.

    Article  PubMed  Google Scholar 

  17. Namazi N, Irandoost P, Heshmati J, Larijani B, Azadbakht L. The association between fat mass and the risk of breast cancer: a systematic review and meta-analysis. Clin Nutr. 2019;38:1496–503. https://doi.org/10.1016/j.clnu.2018.09.013.

    Article  PubMed  Google Scholar 

  18. Fagherazzi G, Fabre A, Boutron-Ruault MC, Clavel-Chapelon F. Serum cholesterol level, use of a cholesterol-lowering drug, and breast cancer: results from the prospective E3N cohort. Eur J Cancer Prev. 2010;19:120–5. https://doi.org/10.1097/CEJ.0b013e3283354918.

    Article  CAS  PubMed  Google Scholar 

  19. Gaudet MM, Press MF, Haile RW, Lynch CF, Glaser SL, Schildkraut J, et al. Risk factors by molecular subtypes of breast cancer across a population-based study of women 56 years or younger. Breast Cancer Res Treat. 2011;130:587–97. https://doi.org/10.1007/s10549-011-1616-x.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Millikan RC, Newman B, Tse CK, Moorman PG, Conway K, Dressler LG, et al. Epidemiology of basal-like breast cancer. Breast Cancer Res Treat. 2008;109:123–39. https://doi.org/10.1007/s10549-007-9632-6.

    Article  PubMed  Google Scholar 

  21. Ford NA, Nunez NP, Holcomb VB, Hursting SD. IGF1 dependence of dietary energy balance effects on murine Met1 mammary tumor progression, epithelial-to-mesenchymal transition, and chemokine expression. Endocr Relat Cancer. 2013;20:39–51. https://doi.org/10.1530/erc-12-0329.

    Article  CAS  PubMed  Google Scholar 

  22. Dunlap SM, Chiao LJ, Nogueira L, Usary J, Perou CM, Varticovski L, et al. Dietary energy balance modulates epithelial-to-mesenchymal transition and tumor progression in murine claudin-low and basal-like mammary tumor models. Cancer Prev Res (Phila). 2012;5:930–42. https://doi.org/10.1158/1940-6207.capr-12-0034.

    Article  CAS  Google Scholar 

  23. Chan DS, Vieira AR, Aune D, Bandera EV, Greenwood DC, McTiernan A, et al. Body mass index and survival in women with breast cancer-systematic literature review and meta-analysis of 82 follow-up studies. Ann Oncol. 2014;25:1901–14. https://doi.org/10.1093/annonc/mdu042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jiralerspong S, Goodwin PJ. Obesity and breast cancer prognosis: evidence, challenges, and opportunities. J Clin Oncol. 2016;34:4203–16. https://doi.org/10.1200/jco.2016.68.4480.

    Article  CAS  PubMed  Google Scholar 

  25. •• Gui Y, Pan Q, Chen X, Xu S, Luo X, Chen L. The association between obesity related adipokines and risk of breast cancer: a meta-analysis. Oncotarget. 2017;8:75389–99. https://doi.org/10.18632/oncotarget.17853This meta-analysis examines the association of the serum levels of several adipokines and the risk of breast cancer.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Caan BJ, Cespedes Feliciano EM, Prado CM, Alexeeff S, Kroenke CH, Bradshaw P, et al. Association of muscle and adiposity measured by computed tomography with survival in patients with nonmetastatic breast cancer. JAMA Oncol. 2018;4:798–804. https://doi.org/10.1001/jamaoncol.2018.0137.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bradshaw PT, Cespedes Feliciano EM, Prado CM, Alexeeff S, Albers KB, Chen WY, et al. Adipose tissue distribution and survival among women with nonmetastatic breast cancer. Obesity (Silver Spring). 2019;27:997–1004. https://doi.org/10.1002/oby.22458.

    Article  CAS  Google Scholar 

  28. Dalamaga M. Obesity, insulin resistance, adipocytokines and breast cancer: new biomarkers and attractive therapeutic targets. World J Exp Med. 2013;3:34–42. https://doi.org/10.5493/wjem.v3.i3.34.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bulun SE, Chen D, Moy I, Brooks DC, Zhao H. Aromatase, breast cancer and obesity: a complex interaction. Trends Endocrinol Metab. 2012;23:83–9. https://doi.org/10.1016/j.tem.2011.10.003.

    Article  CAS  PubMed  Google Scholar 

  30. Dalamaga M, Diakopoulos KN, Mantzoros CS. The role of adiponectin in cancer: a review of current evidence. Endocr Rev. 2012;33:547–94. https://doi.org/10.1210/er.2011-1015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kassi E, Dalamaga M, Hroussalas G, Kazanis K, Merantzi G, Zachari A, et al. Adipocyte factors, high-sensitive C-reactive protein levels and lipoxidative stress products in overweight postmenopausal women with normal and impaired OGTT. Maturitas. 2010;67:72–7. https://doi.org/10.1016/j.maturitas.2010.05.004.

    Article  CAS  PubMed  Google Scholar 

  32. Christodoulatos GS, Dalamaga M. Micro-RNAs as clinical biomarkers and therapeutic targets in breast cancer: Quo vadis? World J Clin Oncol. 2014;5:71–81. https://doi.org/10.5306/wjco.v5.i2.71.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Dalamaga M, Karmaniolas K, Papadavid E, Pelekanos N, Sotiropoulos G, Lekka A. Hyperresistinemia is associated with postmenopausal breast cancer. Menopause. 2013;20:845–51. https://doi.org/10.1097/GME.0b013e31827f06dc.

    Article  PubMed  Google Scholar 

  34. Dalamaga M, Karmaniolas K, Papadavid E, Pelekanos N, Sotiropoulos G, Lekka A. Elevated serum visfatin/nicotinamide phosphoribosyl-transferase levels are associated with risk of postmenopausal breast cancer independently from adiponectin, leptin, and anthropometric and metabolic parameters. Menopause. 2011;18:1198–204. https://doi.org/10.1097/gme.0b013e31821e21f5.

    Article  PubMed  Google Scholar 

  35. Dalamaga M, Sotiropoulos G, Karmaniolas K, Pelekanos N, Papadavid E, Lekka A. Serum resistin: a biomarker of breast cancer in postmenopausal women? Association with clinicopathological characteristics, tumor markers, inflammatory and metabolic parameters. Clin Biochem. 2013;46:584–90. https://doi.org/10.1016/j.clinbiochem.2013.01.001.

    Article  CAS  PubMed  Google Scholar 

  36. Dalamaga M. Nicotinamide phosphoribosyl-transferase/visfatin: a missing link between overweight/obesity and postmenopausal breast cancer? Potential preventive and therapeutic perspectives and challenges. Med Hypotheses. 2012;79:617–21. https://doi.org/10.1016/j.mehy.2012.07.036.

    Article  CAS  PubMed  Google Scholar 

  37. Dalamaga M, Archondakis S, Sotiropoulos G, Karmaniolas K, Pelekanos N, Papadavid E, et al. Could serum visfatin be a potential biomarker for postmenopausal breast cancer? Maturitas. 2012;71:301–8. https://doi.org/10.1016/j.maturitas.2011.12.013.

    Article  CAS  PubMed  Google Scholar 

  38. Tornatore L, Thotakura AK, Bennett J, Moretti M, Franzoso G. The nuclear factor kappa B signaling pathway: integrating metabolism with inflammation. Trends Cell Biol. 2012;22:557–66. https://doi.org/10.1016/j.tcb.2012.08.001.

    Article  CAS  PubMed  Google Scholar 

  39. Mullooly M, Yang HP, Falk RT, Nyante SJ, Cora R, Pfeiffer RM, et al. Relationship between crown-like structures and sex-steroid hormones in breast adipose tissue and serum among postmenopausal breast cancer patients. Breast Cancer Res. 2017;19:8. https://doi.org/10.1186/s13058-016-0791-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Samuel SM, Varghese E, Varghese S, Busselberg D. Challenges and perspectives in the treatment of diabetes associated breast cancer. Cancer Treat Rev. 2018;70:98–111. https://doi.org/10.1016/j.ctrv.2018.08.004.

    Article  CAS  PubMed  Google Scholar 

  41. Cha YJ, Koo JS. Adipokines as therapeutic targets in breast cancer treatment. Expert Opin Ther Targets. 2018;22:941–53. https://doi.org/10.1080/14728222.2018.1538356.

    Article  CAS  PubMed  Google Scholar 

  42. Dalamaga M, Christodoulatos GS, Mantzoros CS. The role of extracellular and intracellular Nicotinamide phosphoribosyl-transferase in cancer: diagnostic and therapeutic perspectives and challenges. Metabolism. 2018;82:72–87. https://doi.org/10.1016/j.metabol.2018.01.001.

    Article  CAS  PubMed  Google Scholar 

  43. Mantzoros C, Petridou E, Dessypris N, Chavelas C, Dalamaga M, Alexe DM, et al. Adiponectin and breast cancer risk. J Clin Endocrinol Metab. 2004;89:1102–7. https://doi.org/10.1210/jc.2003-031804.

    Article  CAS  PubMed  Google Scholar 

  44. Moon HS, Dalamaga M, Kim SY, Polyzos SA, Hamnvik OP, Magkos F, et al. Leptin’s role in lipodystrophic and nonlipodystrophic insulin-resistant and diabetic individuals. Endocr Rev. 2013;34:377–412. https://doi.org/10.1210/er.2012-1053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dalamaga M, Chou SH, Shields K, Papageorgiou P, Polyzos SA, Mantzoros CS. Leptin at the intersection of neuroendocrinology and metabolism: current evidence and therapeutic perspectives. Cell Metab. 2013;18:29–42. https://doi.org/10.1016/j.cmet.2013.05.010.

    Article  CAS  PubMed  Google Scholar 

  46. Lee CH, Woo YC, Wang Y, Yeung CY, Xu A, Lam KS. Obesity, adipokines and cancer: an update. Clin Endocrinol. 2015;83:147–56. https://doi.org/10.1111/cen.12667.

    Article  CAS  Google Scholar 

  47. Kadowaki T, Yamauchi T, Kubota N. The physiological and pathophysiological role of adiponectin and adiponectin receptors in the peripheral tissues and CNS. FEBS Lett. 2008;582:74–80. https://doi.org/10.1016/j.febslet.2007.11.070.

    Article  CAS  PubMed  Google Scholar 

  48. Wang Y, Lam KS, Xu JY, Lu G, Xu LY, Cooper GJ, et al. Adiponectin inhibits cell proliferation by interacting with several growth factors in an oligomerization-dependent manner. J Biol Chem. 2005;280:18341–7. https://doi.org/10.1074/jbc.M501149200.

    Article  CAS  PubMed  Google Scholar 

  49. Ando S, Gelsomino L, Panza S, Giordano C, Bonofiglio D, Barone I, et al. Obesity, Leptin and breast cancer: epidemiological evidence and proposed mechanisms. Cancers (Basel). 2019;11. https://doi.org/10.3390/cancers11010062.

    Article  PubMed Central  Google Scholar 

  50. Boudeau J, Baas AF, Deak M, Morrice NA, Kieloch A, Schutkowski M, et al. MO25alpha/beta interact with STRADalpha/beta enhancing their ability to bind, activate and localize LKB1 in the cytoplasm. EMBO J. 2003;22:5102–14. https://doi.org/10.1093/emboj/cdg490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Alessi DR, Sakamoto K, Bayascas JR. LKB1-dependent signaling pathways. Annu Rev Biochem. 2006;75:137–63. https://doi.org/10.1146/annurev.biochem.75.103004.142702.

    Article  CAS  PubMed  Google Scholar 

  52. Panno ML, Naimo GD, Spina E, Ando S, Mauro L. Different molecular signaling sustaining adiponectin action in breast cancer. Curr Opin Pharmacol. 2016;31:1–7. https://doi.org/10.1016/j.coph.2016.08.001.

    Article  CAS  PubMed  Google Scholar 

  53. Kang JH, Lee YY, Yu BY, Yang BS, Cho KH, Yoon DK, et al. Adiponectin induces growth arrest and apoptosis of MDA-MB-231 breast cancer cell. Arch Pharm Res. 2005;28:1263–9.

    Article  CAS  PubMed  Google Scholar 

  54. Wang Y, Lam JB, Lam KS, Liu J, Lam MC, Hoo RL, et al. Adiponectin modulates the glycogen synthase kinase-3beta/beta-catenin signaling pathway and attenuates mammary tumorigenesis of MDA-MB-231 cells in nude mice. Cancer Res. 2006;66:11462–70. https://doi.org/10.1158/0008-5472.can-06-1969.

    Article  CAS  PubMed  Google Scholar 

  55. Grossmann ME, Nkhata KJ, Mizuno NK, Ray A, Cleary MP. Effects of adiponectin on breast cancer cell growth and signaling. Br J Cancer. 2008;98:370–9. https://doi.org/10.1038/sj.bjc.6604166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nakayama S, Miyoshi Y, Ishihara H, Noguchi S. Growth-inhibitory effect of adiponectin via adiponectin receptor 1 on human breast cancer cells through inhibition of S-phase entry without inducing apoptosis. Breast Cancer Res Treat. 2008;112:405–10. https://doi.org/10.1007/s10549-007-9874-3.

    Article  CAS  PubMed  Google Scholar 

  57. Mauro L, Pellegrino M, De Amicis F, Ricchio E, Giordano F, Rizza P, et al. Evidences that estrogen receptor alpha interferes with adiponectin effects on breast cancer cell growth. Cell Cycle. 2014;13:553–64. https://doi.org/10.4161/cc.27455.

    Article  CAS  PubMed  Google Scholar 

  58. Mauro L, Pellegrino M, Giordano F, Ricchio E, Rizza P, De Amicis F, et al. Estrogen receptor-alpha drives adiponectin effects on cyclin D1 expression in breast cancer cells. FASEB J. 2015;29:2150–60. https://doi.org/10.1096/fj.14-262808.

    Article  CAS  PubMed  Google Scholar 

  59. Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell. 2012;21:297–308. https://doi.org/10.1016/j.ccr.2012.02.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Luo Z, Zang M, Guo W. AMPK as a metabolic tumor suppressor: control of metabolism and cell growth. Future Oncol. 2010;6:457–70. https://doi.org/10.2217/fon.09.174.

    Article  CAS  PubMed  Google Scholar 

  61. Mihaylova MM, Shaw RJ. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol. 2011;13:1016–23. https://doi.org/10.1038/ncb2329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Shackelford DB, Shaw RJ. The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer. 2009;9:563–75. https://doi.org/10.1038/nrc2676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mauro L, Naimo GD, Gelsomino L, Malivindi R, Bruno L, Pellegrino M, et al. Uncoupling effects of estrogen receptor alpha on LKB1/AMPK interaction upon adiponectin exposure in breast cancer. FASEB J. 2018;32:4343–55. https://doi.org/10.1096/fj.201701315R.

    Article  CAS  PubMed  Google Scholar 

  64. Zhang Y, Yu M, Tian W. Physiological and pathological impact of exosomes of adipose tissue. Cell Prolif. 2016;49:3–13. https://doi.org/10.1111/cpr.12233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gernapudi R, Yao Y, Zhang Y, Wolfson B, Roy S, Duru N, et al. Targeting exosomes from preadipocytes inhibits preadipocyte to cancer stem cell signaling in early-stage breast cancer. Breast Cancer Res Treat. 2015;150:685–95. https://doi.org/10.1007/s10549-015-3326-2.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Lin R, Wang S, Zhao RC. Exosomes from human adipose-derived mesenchymal stem cells promote migration through Wnt signaling pathway in a breast cancer cell model. Mol Cell Biochem. 2013;383:13–20. https://doi.org/10.1007/s11010-013-1746-z.

    Article  CAS  PubMed  Google Scholar 

  67. • Gu L, Cao C, Fu J, Li Q, Li DH, Chen MY. Serum adiponectin in breast cancer: a meta-analysis. Medicine (Baltimore). 2018;97:e11433. https://doi.org/10.1097/md.0000000000011433This very recent meta-analysis demonstrates the association between low adiponectin levels and breast cancer in both premenopausal and postmenopausal women.

    Article  CAS  Google Scholar 

  68. Liu LY, Wang M, Ma ZB, Yu LX, Zhang Q, Gao DZ, et al. The role of adiponectin in breast cancer: a meta-analysis. PLoS One. 2013;8:e73183. https://doi.org/10.1371/journal.pone.0073183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ye J, Jia J, Dong S, Zhang C, Yu S, Li L, et al. Circulating adiponectin levels and the risk of breast cancer: a meta-analysis. Eur J Cancer Prev. 2014;23:158–65. https://doi.org/10.1097/CEJ.0b013e328364f293.

    Article  CAS  PubMed  Google Scholar 

  70. Macis D, Guerrieri-Gonzaga A, Gandini S. Circulating adiponectin and breast cancer risk: a systematic review and meta-analysis. Int J Epidemiol. 2014;43:1226–36. https://doi.org/10.1093/ije/dyu088.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Mantzoros CS, Magkos F, Brinkoetter M, Sienkiewicz E, Dardeno TA, Kim SY, et al. Leptin in human physiology and pathophysiology. Am J Physiol Endocrinol Metab. 2011;301:E567–84. https://doi.org/10.1152/ajpendo.00315.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Friedman JM, Mantzoros CS. 20 years of leptin: from the discovery of the leptin gene to leptin in our therapeutic armamentarium. Metabolism. 2015;64:1–4. https://doi.org/10.1016/j.metabol.2014.10.023.

    Article  CAS  PubMed  Google Scholar 

  73. Booth A, Magnuson A, Fouts J, Foster M. Adipose tissue, obesity and adipokines: role in cancer promotion. Horm Mol Biol Clin Invest. 2015;21:57–74. https://doi.org/10.1515/hmbci-2014-0037.

    Article  CAS  Google Scholar 

  74. Sharma D, Saxena NK, Vertino PM, Anania FA. Leptin promotes the proliferative response and invasiveness in human endometrial cancer cells by activating multiple signal-transduction pathways. Endocr Relat Cancer. 2006;13:629–40. https://doi.org/10.1677/erc.1.01169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Choi JH, Park SH, Leung PC, Choi KC. Expression of leptin receptors and potential effects of leptin on the cell growth and activation of mitogen-activated protein kinases in ovarian cancer cells. J Clin Endocrinol Metab. 2005;90:207–10. https://doi.org/10.1210/jc.2004-0297.

    Article  CAS  PubMed  Google Scholar 

  76. Wang Y, Prywes R. Activation of the c-fos enhancer by the erk MAP kinase pathway through two sequence elements: the c-fos AP-1 and p62TCF sites. Oncogene. 2000;19:1379–85. https://doi.org/10.1038/sj.onc.1203443.

    Article  CAS  PubMed  Google Scholar 

  77. Frankenberry KA, Skinner H, Somasundar P, McFadden DW, Vona-Davis LC. Leptin receptor expression and cell signaling in breast cancer. Int J Oncol. 2006;28:985–93.

    CAS  PubMed  Google Scholar 

  78. Harris HR, Tworoger SS, Hankinson SE, Rosner BA, Michels KB. Plasma leptin levels and risk of breast cancer in premenopausal women. Cancer Prev Res (Phila). 2011;4:1449–56. https://doi.org/10.1158/1940-6207.capr-11-0125.

    Article  CAS  Google Scholar 

  79. Garcia-Robles MJ, Segura-Ortega JE, Fafutis-Morris M. The biology of leptin and its implications in breast cancer: a general view. J Interf Cytokine Res. 2013;33:717–27. https://doi.org/10.1089/jir.2012.0168.

    Article  CAS  Google Scholar 

  80. Jarde T, Perrier S, Vasson MP, Caldefie-Chezet F. Molecular mechanisms of leptin and adiponectin in breast cancer. Eur J Cancer. 2011;47:33–43. https://doi.org/10.1016/j.ejca.2010.09.005.

    Article  CAS  PubMed  Google Scholar 

  81. Catalano S, Marsico S, Giordano C, Mauro L, Rizza P, Panno ML, et al. Leptin enhances, via AP-1, expression of aromatase in the MCF-7 cell line. J Biol Chem. 2003;278:28668–76. https://doi.org/10.1074/jbc.M301695200.

    Article  CAS  PubMed  Google Scholar 

  82. Catalano S, Mauro L, Marsico S, Giordano C, Rizza P, Rago V, et al. Leptin induces, via ERK1/ERK2 signal, functional activation of estrogen receptor alpha in MCF-7 cells. J Biol Chem. 2004;279:19908–15. https://doi.org/10.1074/jbc.M313191200.

    Article  CAS  PubMed  Google Scholar 

  83. Allott EH, Masko EM, Freedland SJ. Obesity and prostate cancer: weighing the evidence. Eur Urol. 2013;63:800–9. https://doi.org/10.1016/j.eururo.2012.11.013.

    Article  CAS  PubMed  Google Scholar 

  84. Mauro L, Catalano S, Bossi G, Pellegrino M, Barone I, Morales S, et al. Evidences that leptin up-regulates E-cadherin expression in breast cancer: effects on tumor growth and progression. Cancer Res. 2007;67:3412–21. https://doi.org/10.1158/0008-5472.can-06-2890.

    Article  CAS  PubMed  Google Scholar 

  85. Raut PK, Choi DY, Kim SH, Hong JT, Kwon TK, Jeong JH, et al. Estrogen receptor signaling mediates leptin-induced growth of breast cancer cells via autophagy induction. Oncotarget. 2017;8:109417–35. https://doi.org/10.18632/oncotarget.22684.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Park J, Kusminski CM, Chua SC, Scherer PE. Leptin receptor signaling supports cancer cell metabolism through suppression of mitochondrial respiration in vivo. Am J Pathol. 2010;177:3133–44. https://doi.org/10.2353/ajpath.2010.100595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zheng Q, Dunlap SM, Zhu J, Downs-Kelly E, Rich J, Hursting SD, et al. Leptin deficiency suppresses MMTV-Wnt-1 mammary tumor growth in obese mice and abrogates tumor initiating cell survival. Endocr Relat Cancer. 2011;18:491–503. https://doi.org/10.1530/erc-11-0102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chang CC, Wu MJ, Yang JY, Camarillo IG, Chang CJ. Leptin-STAT3-G9a signaling promotes obesity-mediated breast cancer progression. Cancer Res. 2015;75:2375–86. https://doi.org/10.1158/0008-5472.can-14-3076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Giordano C, Vizza D, Panza S, Barone I, Bonofiglio D, Lanzino M, et al. Leptin increases HER2 protein levels through a STAT3-mediated up-regulation of Hsp90 in breast cancer cells. Mol Oncol. 2013;7:379–91. https://doi.org/10.1016/j.molonc.2012.11.002.

    Article  CAS  PubMed  Google Scholar 

  90. Guo S, Gonzalez-Perez RR. Notch, IL-1 and leptin crosstalk outcome (NILCO) is critical for leptin-induced proliferation, migration and VEGF/VEGFR-2 expression in breast cancer. PLoS One. 2011;6:e21467. https://doi.org/10.1371/journal.pone.0021467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lipsey CC, Harbuzariu A, Daley-Brown D, Gonzalez-Perez RR. Oncogenic role of leptin and Notch interleukin-1 leptin crosstalk outcome in cancer. World J Methodol. 2016;6:43–55. https://doi.org/10.5662/wjm.v6.i1.43.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Wang T, Fahrmann JF, Lee H, Li YJ, Tripathi SC, Yue C, et al. JAK/STAT3-regulated fatty acid beta-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance. Cell Metab. 2018;27:1357. https://doi.org/10.1016/j.cmet.2018.04.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. • Pan H, Deng LL, Cui JQ, Shi L, Yang YC, Luo JH, et al. Association between serum leptin levels and breast cancer risk: an updated systematic review and meta-analysis. Medicine (Baltimore). 2018;97:e11345. https://doi.org/10.1097/md.0000000000011345This recent meta-analysis has shown that higher leptin levels are associated with increased risk for breast cancer, especially for overweight/obese and postmenopausal women.

    Article  CAS  Google Scholar 

  94. Niu J, Jiang L, Guo W, Shao L, Liu Y, Wang L. The association between leptin level and breast cancer: a meta-analysis. PLoS One. 2013;8:e67349. https://doi.org/10.1371/journal.pone.0067349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Dalamaga M. Resistin as a biomarker linking obesity and inflammation to cancer: potential clinical perspectives. Biomark Med. 2014;8:107–18. https://doi.org/10.2217/bmm.13.99.

    Article  CAS  PubMed  Google Scholar 

  96. Jamaluddin MS, Weakley SM, Yao Q, Chen C. Resistin: functional roles and therapeutic considerations for cardiovascular disease. Br J Pharmacol. 2012;165:622–32. https://doi.org/10.1111/j.1476-5381.2011.01369.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wang CH, Wang PJ, Hsieh YC, Lo S, Lee YC, Chen YC, et al. Resistin facilitates breast cancer progression via TLR4-mediated induction of mesenchymal phenotypes and stemness properties. Oncogene. 2018;37:589–600. https://doi.org/10.1038/onc.2017.357.

    Article  CAS  PubMed  Google Scholar 

  98. Avtanski D, Garcia A, Caraballo B, Thangeswaran P, Marin S, Bianco J, et al. Resistin induces breast cancer cells epithelial to mesenchymal transition (EMT) and stemness through both adenylyl cyclase-associated protein 1 (CAP1)-dependent and CAP1-independent mechanisms. Cytokine. 2019;120:155–64. https://doi.org/10.1016/j.cyto.2019.04.016.

    Article  CAS  PubMed  Google Scholar 

  99. Lee JO, Kim N, Lee HJ, Lee YW, Kim SJ, Park SH, et al. Resistin, a fat-derived secretory factor, promotes metastasis of MDA-MB-231 human breast cancer cells through ERM activation. Sci Rep. 2016;6:18923. https://doi.org/10.1038/srep18923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Liu Z, Shi A, Song D, Han B, Zhang Z, Ma L, et al. Resistin confers resistance to doxorubicin-induced apoptosis in human breast cancer cells through autophagy induction. Am J Cancer Res. 2017;7:574–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Deshmukh SK, Srivastava SK, Zubair H, Bhardwaj A, Tyagi N, Al-Ghadhban A, et al. Resistin potentiates chemoresistance and stemness of breast cancer cells: Implications for racially disparate therapeutic outcomes. Cancer Lett. 2017;396:21–9. https://doi.org/10.1016/j.canlet.2017.03.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Georgiou GP, Provatopoulou X, Kalogera E, Siasos G, Menenakos E, Zografos GC, et al. Serum resistin is inversely related to breast cancer risk in premenopausal women. Breast. 2016;29:163–9. https://doi.org/10.1016/j.breast.2016.07.025.

    Article  PubMed  Google Scholar 

  103. Lee YC, Chen YJ, Wu CC, Lo S, Hou MF, Yuan SS. Resistin expression in breast cancer tissue as a marker of prognosis and hormone therapy stratification. Gynecol Oncol. 2012;125:742–50. https://doi.org/10.1016/j.ygyno.2012.02.032.

    Article  CAS  PubMed  Google Scholar 

  104. Gong WJ, Zheng W, Xiao L, Tan LM, Song J, Li XP, et al. Circulating resistin levels and obesity-related cancer risk: a meta-analysis. Oncotarget. 2016;7:57694–704. https://doi.org/10.18632/oncotarget.11034.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Zhang LQ, Heruth DP, Ye SQ. Nicotinamide Phosphoribosyltransferase in human diseases. J Bioanal Biomed. 2011;3:13–25. https://doi.org/10.4172/1948-593x.1000038.

    Article  PubMed  Google Scholar 

  106. Duarte-Pereira S, Silva SS, Azevedo L, Castro L, Amorim A, Silva RM. NAMPT and NAPRT1: novel polymorphisms and distribution of variants between normal tissues and tumor samples. Sci Rep. 2014;4:6311. https://doi.org/10.1038/srep06311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Rongvaux A, Shea RJ, Mulks MH, Gigot D, Urbain J, Leo O, et al. Pre-B-cell colony-enhancing factor, whose expression is up-regulated in activated lymphocytes, is a nicotinamide phosphoribosyltransferase, a cytosolic enzyme involved in NAD biosynthesis. Eur J Immunol. 2002;32:3225–34. https://doi.org/10.1002/1521-4141(200211)32:11<3225::AID-IMMU3225>3.0.CO;2-L.

    Article  CAS  PubMed  Google Scholar 

  108. Galli M, Van Gool F, Rongvaux A, Andris F, Leo O. The nicotinamide phosphoribosyltransferase: a molecular link between metabolism, inflammation, and cancer. Cancer Res. 2010;70:8–11. https://doi.org/10.1158/0008-5472.can-09-2465.

    Article  CAS  PubMed  Google Scholar 

  109. Yu-Duan T, Chao-Ping W, Chih-Yu C, Li-Wen L, Tsun-Mei L, Chia-Chang H, et al. Elevated plasma level of visfatin/pre-b cell colony-enhancing factor in male oral squamous cell carcinoma patients. Med Oral Patol Oral Cir Bucal. 2013;18:e180–6. https://doi.org/10.4317/medoral.18574.

    Article  PubMed  Google Scholar 

  110. Park HJ, Kim SR, Kim SS, Wee HJ, Bae MK, Ryu MH, et al. Visfatin promotes cell and tumor growth by upregulating Notch1 in breast cancer. Oncotarget. 2014;5:5087–99. https://doi.org/10.18632/oncotarget.2086.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Gabow PA. Autosomal dominant polycystic kidney disease--more than a renal disease. Am J Kidney Dis. 1990;16:403–13.

    Article  CAS  PubMed  Google Scholar 

  112. Audrito V, Serra S, Brusa D, Mazzola F, Arruga F, Vaisitti T, et al. Extracellular nicotinamide phosphoribosyltransferase (NAMPT) promotes M2 macrophage polarization in chronic lymphocytic leukemia. Blood. 2015;125:111–23. https://doi.org/10.1182/blood-2014-07-589069.

    Article  CAS  PubMed  Google Scholar 

  113. Behrouzfar K, Alaee M, Nourbakhsh M, Gholinejad Z, Golestani A. Extracellular NAMPT/visfatin causes p53 deacetylation via NAD production and SIRT1 activation in breast cancer cells. Cell Biochem Funct. 2017;35:327–33. https://doi.org/10.1002/cbf.3279.

    Article  CAS  PubMed  Google Scholar 

  114. Gholinejad Z, Kheiripour N, Nourbakhsh M, Ilbeigi D, Behroozfar K, Hesari Z, et al. Extracellular NAMPT/Visfatin induces proliferation through ERK1/2 and AKT and inhibits apoptosis in breast cancer cells. Peptides. 2017;92:9–15. https://doi.org/10.1016/j.peptides.2017.04.007.

    Article  CAS  PubMed  Google Scholar 

  115. Lee YC, Yang YH, Su JH, Chang HL, Hou MF, Yuan SS. High visfatin expression in breast cancer tissue is associated with poor survival. Cancer Epidemiol Biomark Prev. 2011;20:1892–901. https://doi.org/10.1158/1055-9965.epi-11-0399.

    Article  CAS  Google Scholar 

  116. Hung AC, Lo S, Hou MF, Lee YC, Tsai CH, Chen YY, et al. Extracellular visfatin-promoted malignant behavior in breast cancer is mediated through c-Abl and STAT3 activation. Clin Cancer Res. 2016;22:4478–90. https://doi.org/10.1158/1078-0432.ccr-15-2704.

    Article  CAS  PubMed  Google Scholar 

  117. Moi SH, Lee YC, Chuang LY, Yuan SF, Ou-Yang F, Hou MF, et al. Cumulative receiver operating characteristics for analyzing interaction between tissue visfatin and clinicopathologic factors in breast cancer progression. Cancer Cell Int. 2018;18:19. https://doi.org/10.1186/s12935-018-0517-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Yoon YS, Kwon AR, Lee YK, Oh SW. Circulating adipokines and risk of obesity related cancers: a systematic review and meta-analysis. Obes Res Clin Pract. 2019. https://doi.org/10.1016/j.orcp.2019.03.006.

    Article  Google Scholar 

  119. Carpene C, Dray C, Attane C, Valet P, Portillo MP, Churruca I, et al. Expanding role for the apelin/APJ system in physiopathology. J Physiol Biochem. 2007;63:359–73.

    Article  CAS  PubMed  Google Scholar 

  120. Castan-Laurell I, Dray C, Attane C, Duparc T, Knauf C, Valet P. Apelin, diabetes, and obesity. Endocrine. 2011;40:1–9. https://doi.org/10.1007/s12020-011-9507-9.

    Article  CAS  PubMed  Google Scholar 

  121. Boucher J, Masri B, Daviaud D, Gesta S, Guigne C, Mazzucotelli A, et al. Apelin, a newly identified adipokine up-regulated by insulin and obesity. Endocrinology. 2005;146:1764–71. https://doi.org/10.1210/en.2004-1427.

    Article  CAS  PubMed  Google Scholar 

  122. Berta J, Hoda MA, Laszlo V, Rozsas A, Garay T, Torok S, et al. Apelin promotes lymphangiogenesis and lymph node metastasis. Oncotarget. 2014;5:4426–37. https://doi.org/10.18632/oncotarget.2032.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Peng X, Li F, Wang P, Jia S, Sun L, Huo H. Apelin-13 induces MCF-7 cell proliferation and invasion via phosphorylation of ERK1/2. Int J Mol Med. 2015;36:733–8. https://doi.org/10.3892/ijmm.2015.2265.

    Article  CAS  PubMed  Google Scholar 

  124. Sorli SC, Le Gonidec S, Knibiehler B, Audigier Y. Apelin is a potent activator of tumour neoangiogenesis. Oncogene. 2007;26:7692–9. https://doi.org/10.1038/sj.onc.1210573.

    Article  CAS  PubMed  Google Scholar 

  125. Hu D, Zhu WF, Shen WC, Xia Y, Wu XF, Zhang HJ, et al. Expression of Apelin and Snail protein in breast cancer and their prognostic significance. Zhonghua Bing Li Xue Za Zhi. 2018;47:743–6. https://doi.org/10.3760/cma.j.issn.0529-5807.2018.10.002.

    Article  CAS  PubMed  Google Scholar 

  126. Wang Z, Greeley GH Jr, Qiu S. Immunohistochemical localization of apelin in human normal breast and breast carcinoma. J Mol Histol. 2008;39:121–4. https://doi.org/10.1007/s10735-007-9135-0.

    Article  CAS  PubMed  Google Scholar 

  127. Salman T, Demir L, Varol U, Akyol M, Oflazoglu U, Yildiz Y, et al. Serum apelin levels and body composition changes in breast cancer patients treated with an aromatase inhibitor. J buon. 2016;21:1419–24.

    PubMed  Google Scholar 

  128. Goralski KB, McCarthy TC, Hanniman EA, Zabel BA, Butcher EC, Parlee SD, et al. Chemerin, a novel adipokine that regulates adipogenesis and adipocyte metabolism. J Biol Chem. 2007;282:28175–88. https://doi.org/10.1074/jbc.M700793200.

    Article  CAS  PubMed  Google Scholar 

  129. Bozaoglu K, Bolton K, McMillan J, Zimmet P, Jowett J, Collier G, et al. Chemerin is a novel adipokine associated with obesity and metabolic syndrome. Endocrinology. 2007;148:4687–94. https://doi.org/10.1210/en.2007-0175.

    Article  CAS  PubMed  Google Scholar 

  130. Shin WJ, Zabel BA, Pachynski RK. Mechanisms and functions of chemerin in cancer: potential roles in therapeutic intervention. Front Immunol. 2018;9:2772. https://doi.org/10.3389/fimmu.2018.02772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Cabia B, Andrade S, Carreira MC, Casanueva FF, Crujeiras AB. A role for novel adipose tissue-secreted factors in obesity-related carcinogenesis. Obes Rev. 2016;17:361–76. https://doi.org/10.1111/obr.12377.

    Article  CAS  PubMed  Google Scholar 

  132. El-Sagheer G, Gayyed M, Ahmad A, Abd El-Fattah A, Mohamed M. Expression of chemerin correlates with a poor prognosis in female breast cancer patients. Breast Cancer (Dove Med Press). 2018;10:169–76. https://doi.org/10.2147/bctt.s178181.

    Article  CAS  Google Scholar 

  133. • Pachynski RK, Wang P, Salazar N, Zheng Y, Nease L, Rosalez J, et al. Chemerin suppresses breast cancer growth by recruiting immune effector cells into the tumor microenvironment. Front Immunol. 2019;10:983. https://doi.org/10.3389/fimmu.2019.00983This study has shown for the first time that increased chemerin expression into the breast cancer milieu can suppress tumor growth by recruiting NK and T cells, thus supporting this approach as a promising immunotherapeutic strategy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Akin S. Serum chemerin level in breast cancer. Int J Hematol Oncol. 2017;27:127–32. https://doi.org/10.4999/uhod.171847.

    Article  CAS  Google Scholar 

  135. Hofmann T, Elbelt U, Stengel A. Irisin as a muscle-derived hormone stimulating thermogenesis--a critical update. Peptides. 2014;54:89–100. https://doi.org/10.1016/j.peptides.2014.01.016.

    Article  CAS  PubMed  Google Scholar 

  136. Bostrom P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, et al. A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012;481:463–8. https://doi.org/10.1038/nature10777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Perakakis N, Triantafyllou GA, Fernandez-Real JM, Huh JY, Park KH, Seufert J, et al. Physiology and role of irisin in glucose homeostasis. Nat Rev Endocrinol. 2017;13:324–37. https://doi.org/10.1038/nrendo.2016.221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Aydin S, Kuloglu T, Aydin S, Kalayci M, Yilmaz M, Cakmak T, et al. A comprehensive immunohistochemical examination of the distribution of the fat-burning protein irisin in biological tissues. Peptides. 2014;61:130–6. https://doi.org/10.1016/j.peptides.2014.09.014.

    Article  CAS  PubMed  Google Scholar 

  139. Roca-Rivada A, Castelao C, Senin LL, Landrove MO, Baltar J, Belen Crujeiras A, et al. FNDC5/irisin is not only a myokine but also an adipokine. PLoS One. 2013;8:e60563. https://doi.org/10.1371/journal.pone.0060563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Gannon NP, Vaughan RA, Garcia-Smith R, Bisoffi M, Trujillo KA. Effects of the exercise-inducible myokine irisin on malignant and non-malignant breast epithelial cell behavior in vitro. Int J Cancer. 2015;136:E197–202. https://doi.org/10.1002/ijc.29142.

    Article  CAS  PubMed  Google Scholar 

  141. Provatopoulou X, Georgiou GP, Kalogera E, Kalles V, Matiatou MA, Papapanagiotou I, et al. Serum irisin levels are lower in patients with breast cancer: association with disease diagnosis and tumor characteristics. BMC Cancer. 2015;15:898. https://doi.org/10.1186/s12885-015-1898-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Zhang ZP, Zhang XF, Li H, Liu TJ, Zhao QP, Huang LH, et al. Serum irisin associates with breast cancer to spinal metastasis. Medicine (Baltimore). 2018;97:e0524. https://doi.org/10.1097/md.0000000000010524.

    Article  CAS  Google Scholar 

  143. Flower DR. The lipocalin protein family: structure and function. Biochem J. 1996;318(Pt 1):1–14. https://doi.org/10.1042/bj3180001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. •• Hu C, Yang K, Li M, Huang W, Zhang F, Wang H. Lipocalin 2: a potential therapeutic target for breast cancer metastasis. Onco Targets Ther. 2018;11:8099–106. https://doi.org/10.2147/ott.s181223This review summarizes evidence on the abnormal expression of lipocalin 2 in breast cancer progression, highlights the latest developments of potential lipocalin 2-targeting agents and proposed lipocalin 2-associated molecular mechanisms implicated in breast cancer invasion and metastasis.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Yang J, Bielenberg DR, Rodig SJ, Doiron R, Clifton MC, Kung AL, et al. Lipocalin 2 promotes breast cancer progression. Proc Natl Acad Sci U S A. 2009;106:3913–8. https://doi.org/10.1073/pnas.0810617106.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Oren B, Urosevic J, Mertens C, Mora J, Guiu M, Gomis RR, et al. Tumour stroma-derived lipocalin-2 promotes breast cancer metastasis. J Pathol. 2016;239:274–85. https://doi.org/10.1002/path.4724.

    Article  CAS  PubMed  Google Scholar 

  147. Leng X, Wu Y, Arlinghaus RB. Relationships of lipocalin 2 with breast tumorigenesis and metastasis. J Cell Physiol. 2011;226:309–14. https://doi.org/10.1002/jcp.22403.

    Article  CAS  PubMed  Google Scholar 

  148. Yang J, McNeish B, Butterfield C, Moses MA. Lipocalin 2 is a novel regulator of angiogenesis in human breast cancer. FASEB J. 2013;27:45–50. https://doi.org/10.1096/fj.12-211730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Wang Y, Zeng T. Neutrophil gelatinase-associated lipocalin protein as a biomarker in the diagnosis of breast cancer: a meta-analysis. Biomed Rep. 2013;1:479–83. https://doi.org/10.3892/br.2013.89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Sung H, Choi JY, Lee SA, Lee KM, Han S, Jeon S, et al. The association between the preoperative serum levels of lipocalin-2 and matrix metalloproteinase-9 (MMP-9) and prognosis of breast cancer. BMC Cancer. 2012;12:193. https://doi.org/10.1186/1471-2407-12-193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Wenners AS, Mehta K, Loibl S, Park H, Mueller B, Arnold N, et al. Neutrophil gelatinase-associated lipocalin (NGAL) predicts response to neoadjuvant chemotherapy and clinical outcome in primary human breast cancer. PLoS One. 2012;7:e45826. https://doi.org/10.1371/journal.pone.0045826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Bauer M, Eickhoff JC, Gould MN, Mundhenke C, Maass N, Friedl A. Neutrophil gelatinase-associated lipocalin (NGAL) is a predictor of poor prognosis in human primary breast cancer. Breast Cancer Res Treat. 2008;108:389–97. https://doi.org/10.1007/s10549-007-9619-3.

    Article  CAS  PubMed  Google Scholar 

  153. Provatopoulou X, Gounaris A, Kalogera E, Zagouri F, Flessas I, Goussetis E, et al. Circulating levels of matrix metalloproteinase-9 (MMP-9), neutrophil gelatinase-associated lipocalin (NGAL) and their complex MMP-9/NGAL in breast cancer disease. BMC Cancer. 2009;9:390. https://doi.org/10.1186/1471-2407-9-390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Cheng G, Sun X, Wang J, Xiao G, Wang X, Fan X, et al. HIC1 silencing in triple-negative breast cancer drives progression through misregulation of LCN2. Cancer Res. 2014;74:862–72. https://doi.org/10.1158/0008-5472.can-13-2420.

    Article  CAS  PubMed  Google Scholar 

  155. Tanaka M, Miyajima A, Oncostatin M. A multifunctional cytokine. Rev Physiol Biochem Pharmacol. 2003;149:39–52. https://doi.org/10.1007/s10254-003-0013-1.

    Article  CAS  PubMed  Google Scholar 

  156. Sanchez-Infantes D, White UA, Elks CM, Morrison RF, Gimble JM, Considine RV, et al. Oncostatin m is produced in adipose tissue and is regulated in conditions of obesity and type 2 diabetes. J Clin Endocrinol Metab. 2014;99:E217–25. https://doi.org/10.1210/jc.2013-3555.

    Article  CAS  PubMed  Google Scholar 

  157. Richards CD. The enigmatic cytokine oncostatin m and roles in disease. ISRN Inflamm. 2013;2013:512103. https://doi.org/10.1155/2013/512103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Gomez-Lechon MJ. Oncostatin M: signal transduction and biological activity. Life Sci. 1999;65:2019–30.

    Article  CAS  PubMed  Google Scholar 

  159. Lapeire L, Hendrix A, Lambein K, Van Bockstal M, Braems G, Van Den Broecke R, et al. Cancer-associated adipose tissue promotes breast cancer progression by paracrine oncostatin M and Jak/STAT3 signaling. Cancer Res. 2014;74:6806–19. https://doi.org/10.1158/0008-5472.can-14-0160.

    Article  CAS  PubMed  Google Scholar 

  160. West NR, Murray JI, Watson PH. Oncostatin-M promotes phenotypic changes associated with mesenchymal and stem cell-like differentiation in breast cancer. Oncogene. 2014;33:1485–94. https://doi.org/10.1038/onc.2013.105.

    Article  CAS  PubMed  Google Scholar 

  161. Tawara K, Bolin C, Koncinsky J, Kadaba S, Covert H, Sutherland C, et al. OSM potentiates preintravasation events, increases CTC counts, and promotes breast cancer metastasis to the lung. Breast Cancer Res. 2018;20:53. https://doi.org/10.1186/s13058-018-0971-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Tawara K, Scott H, Emathinger J, Wolf C, LaJoie D, Hedeen D, et al. HIGH expression of OSM and IL-6 are associated with decreased breast cancer survival: synergistic induction of IL-6 secretion by OSM and IL-1beta. Oncotarget. 2019;10:2068–85. https://doi.org/10.18632/oncotarget.26699.

    Article  PubMed  PubMed Central  Google Scholar 

  163. West NR, Murphy LC, Watson PH. Oncostatin M suppresses oestrogen receptor-alpha expression and is associated with poor outcome in human breast cancer. Endocr Relat Cancer. 2012;19:181–95. https://doi.org/10.1530/erc-11-0326.

    Article  CAS  PubMed  Google Scholar 

  164. Doherty MR, Parvani JG, Tamagno I, Junk DJ, Bryson BL, Cheon HJ, et al. The opposing effects of interferon-beta and oncostatin-M as regulators of cancer stem cell plasticity in triple-negative breast cancer. Breast Cancer Res. 2019;21:54. https://doi.org/10.1186/s13058-019-1136-x.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Sodek J, Ganss B, McKee MD. Osteopontin. Crit Rev Oral Biol Med. 2000;11:279–303.

    Article  CAS  PubMed  Google Scholar 

  166. Kahles F, Findeisen HM, Bruemmer D. Osteopontin: a novel regulator at the cross roads of inflammation, obesity and diabetes. Mol Metab. 2014;3:384–93. https://doi.org/10.1016/j.molmet.2014.03.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Rodrigues LR, Teixeira JA, Schmitt FL, Paulsson M, Lindmark-Mansson H. The role of osteopontin in tumor progression and metastasis in breast cancer. Cancer Epidemiol Biomark Prev. 2007;16:1087–97. https://doi.org/10.1158/1055-9965.epi-06-1008.

    Article  CAS  Google Scholar 

  168. Zhao H, Chen Q, Alam A, Cui J, Suen KC, Soo AP, et al. The role of osteopontin in the progression of solid organ tumour. Cell Death Dis. 2018;9:356. https://doi.org/10.1038/s41419-018-0391-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Tuck AB, Elliott BE, Hota C, Tremblay E, Chambers AF. Osteopontin-induced, integrin-dependent migration of human mammary epithelial cells involves activation of the hepatocyte growth factor receptor (Met). J Cell Biochem. 2000;78:465–75.

    Article  CAS  PubMed  Google Scholar 

  170. Noti JD. Adherence to osteopontin via alphavbeta3 suppresses phorbol ester-mediated apoptosis in MCF-7 breast cancer cells that overexpress protein kinase C-alpha. Int J Oncol. 2000;17:1237–43. https://doi.org/10.3892/ijo.17.6.1237.

    Article  CAS  PubMed  Google Scholar 

  171. Singhal H, Bautista DS, Tonkin KS, O’Malley FP, Tuck AB, Chambers AF, et al. Elevated plasma osteopontin in metastatic breast cancer associated with increased tumor burden and decreased survival. Clin Cancer Res. 1997;3:605–11.

    CAS  PubMed  Google Scholar 

  172. Rudland PS, Platt-Higgins A, El-Tanani M, De Silva RS, Barraclough R, Winstanley JH, et al. Prognostic significance of the metastasis-associated protein osteopontin in human breast cancer. Cancer Res. 2002;62:3417–27.

    CAS  PubMed  Google Scholar 

  173. Brown LF, Papadopoulos-Sergiou A, Berse B, Manseau EJ, Tognazzi K, Perruzzi CA, et al. Osteopontin expression and distribution in human carcinomas. Am J Pathol. 1994;145:610–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Tuck AB, Chambers AF. The role of osteopontin in breast cancer: clinical and experimental studies. J Mammary Gland Biol Neoplasia. 2001;6:419–29.

    Article  CAS  PubMed  Google Scholar 

  175. Furger KA, Menon RK, Tuck AB, Bramwell VH, Chambers AF. The functional and clinical roles of osteopontin in cancer and metastasis. Curr Mol Med. 2001;1:621–32.

    Article  CAS  PubMed  Google Scholar 

  176. Xu K, Tian X, Oh SY, Movassaghi M, Naber SP, Kuperwasser C, et al. The fibroblast Tiam1-osteopontin pathway modulates breast cancer invasion and metastasis. Breast Cancer Res. 2016;18:14. https://doi.org/10.1186/s13058-016-0674-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Sharon Y, Raz Y, Cohen N, Ben-Shmuel A, Schwartz H, Geiger T, et al. Tumor-derived osteopontin reprograms normal mammary fibroblasts to promote inflammation and tumor growth in breast cancer. Cancer Res. 2015;75:963–73. https://doi.org/10.1158/0008-5472.can-14-1990.

    Article  CAS  PubMed  Google Scholar 

  178. • Han B, Huang J, Han Y, Hao J, Wu X, Song H, et al. The microRNA miR-181c enhances chemosensitivity and reduces chemoresistance in breast cancer cells via down-regulating osteopontin. Int J Biol Macromol. 2019;125:544–56. https://doi.org/10.1016/j.ijbiomac.2018.12.075This study provides new insights in developing effective interventions for breast cancer patients with acquired resistance to chemotherapy suggesting that the miR-181c/osteopontin axis might be a promising prognostic index and a potential therapeutic target.

    Article  CAS  PubMed  Google Scholar 

  179. Hao C, Wang Z, Gu Y, Jiang WG, Cheng S. prognostic value of osteopontin splice variant-c expression in breast cancers: a meta-analysis. Biomed Res Int. 2016;2016:7310694. https://doi.org/10.1155/2016/7310694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Xu YY, Zhang YY, Lu WF, Mi YJ, Chen YQ. Prognostic value of osteopontin expression in breast cancer: a meta-analysis. Mol Clin Oncol. 2015;3:357–62. https://doi.org/10.3892/mco.2014.480.

    Article  PubMed  Google Scholar 

  181. Vucenik I, Stains JP. Obesity and cancer risk: evidence, mechanisms, and recommendations. Ann N Y Acad Sci. 2012;1271:37–43. https://doi.org/10.1111/j.1749-6632.2012.06750.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Gapstur SM, Drope JM, Jacobs EJ, Teras LR, McCullough ML, Douglas CE, et al. A blueprint for the primary prevention of cancer: targeting established, modifiable risk factors. CA Cancer J Clin. 2018;68:446–70. https://doi.org/10.3322/caac.21496.

    Article  PubMed  Google Scholar 

  183. Ligibel JA, Alfano CM, Courneya KS, Demark-Wahnefried W, Burger RA, Chlebowski RT, et al. American Society of Clinical Oncology position statement on obesity and cancer. J Clin Oncol. 2014;32:3568–74. https://doi.org/10.1200/jco.2014.58.4680.

    Article  PubMed  PubMed Central  Google Scholar 

  184. World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR). Diet, nutrition, physical activity and cancer: a global perspective. In: Continuous Update Project Expert Report 2018. London: WCRF International; 2018. wcrf.org/dietand-cancer/contents. Accessed May 24, 2019.

    Google Scholar 

  185. Rock CL, Pande C, Flatt SW, Ying C, Pakiz B, Parker BA, et al. Favorable changes in serum estrogens and other biologic factors after weight loss in breast cancer survivors who are overweight or obese. Clin Breast Cancer. 2013;13:188–95. https://doi.org/10.1016/j.clbc.2012.12.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Birks S, Peeters A, Backholer K, O’Brien P, Brown W. A systematic review of the impact of weight loss on cancer incidence and mortality. Obes Rev. 2012;13:868–91. https://doi.org/10.1111/j.1467-789X.2012.01010.x.

    Article  CAS  PubMed  Google Scholar 

  187. Afshin A, Forouzanfar MH, Reitsma MB, Sur P, Estep K, Lee A, et al. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017;377:13–27. https://doi.org/10.1056/NEJMoa1614362.

    Article  PubMed  Google Scholar 

  188. Weigl J, Hauner H, Hauner D. Can nutrition lower the risk of recurrence in breast cancer? Breast Care (Basel). 2018;13:86–91. https://doi.org/10.1159/000488718.

    Article  Google Scholar 

  189. Wiggins T, Antonowicz SS, Markar SR. Cancer risk following bariatric surgery-systematic review and meta-analysis of national population-based cohort studies. Obes Surg. 2019;29:1031–9. https://doi.org/10.1007/s11695-018-3501-8.

    Article  PubMed  Google Scholar 

  190. Winder AA, Kularatna M, MacCormick AD. Does bariatric surgery affect the incidence of breast cancer development? a systematic review. Obes Surg. 2017;27:3014–20. https://doi.org/10.1007/s11695-017-2901-5.

    Article  PubMed  Google Scholar 

  191. Haider DG, Schindler K, Schaller G, Prager G, Wolzt M, Ludvik B. Increased plasma visfatin concentrations in morbidly obese subjects are reduced after gastric banding. J Clin Endocrinol Metab. 2006;91:1578–81. https://doi.org/10.1210/jc.2005-2248.

    Article  CAS  PubMed  Google Scholar 

  192. Terra X, Auguet T, Guiu-Jurado E, Berlanga A, Orellana-Gavalda JM, Hernandez M, et al. Long-term changes in leptin, chemerin and ghrelin levels following different bariatric surgery procedures: Roux-en-Y gastric bypass and sleeve gastrectomy. Obes Surg. 2013;23:1790–8. https://doi.org/10.1007/s11695-013-1033-9.

    Article  PubMed  Google Scholar 

  193. Sjostrom L, Gummesson A, Sjostrom CD, Narbro K, Peltonen M, Wedel H, et al. Effects of bariatric surgery on cancer incidence in obese patients in Sweden (Swedish Obese Subjects Study): a prospective, controlled intervention trial. Lancet Oncol. 2009;10:653–62. https://doi.org/10.1016/s1470-2045(09)70159-7.

    Article  PubMed  Google Scholar 

  194. Zhu J, Schott M, Liu R, Liu C, Shen B, Wang Q, et al. Intensive glycemic control lowers plasma visfatin levels in patients with type 2 diabetes. Horm Metab Res. 2008;40:801–5. https://doi.org/10.1055/s-0028-1082040.

    Article  CAS  PubMed  Google Scholar 

  195. Mallik R, Chowdhury TA. Metformin in cancer. Diabetes Res Clin Pract. 2018;143:409–19. https://doi.org/10.1016/j.diabres.2018.05.023.

    Article  CAS  PubMed  Google Scholar 

  196. Rahmani J, Manzari N, Thompson J, Gudi SK, Chhabra M, Naik G, et al. The effect of metformin on biomarkers associated with breast cancer outcomes: a systematic review, meta-analysis, and dose-response of randomized clinical trials. Clin Transl Oncol. 2019. https://doi.org/10.1007/s12094-019-02108-9.

  197. Tang GH, Satkunam M, Pond GR, Steinberg GR, Blandino G, Schunemann HJ, et al. Association of metformin with breast cancer incidence and mortality in patients with type II diabetes: A GRADE-assessed systematic review and meta-analysis. Cancer Epidemiol Biomark Prev. 2018;27:627–35. https://doi.org/10.1158/1055-9965.epi-17-0936.

    Article  CAS  Google Scholar 

  198. Zhang ZJ, Yuan J, Bi Y, Wang C, Liu Y. The effect of metformin on biomarkers and survivals for breast cancer- a systematic review and meta-analysis of randomized clinical trials. Pharmacol Res. 2019;141:551–5. https://doi.org/10.1016/j.phrs.2019.01.036.

    Article  CAS  PubMed  Google Scholar 

  199. Shafiei-Irannejad V, Samadi N, Yousefi B, Salehi R, Velaei K, Zarghami N. Metformin enhances doxorubicin sensitivity via inhibition of doxorubicin efflux in P-gp-overexpressing MCF-7 cells. Chem Biol Drug Des. 2018;91:269–76. https://doi.org/10.1111/cbdd.13078.

    Article  CAS  PubMed  Google Scholar 

  200. Catalano S, Mauro L, Bonofiglio D, Pellegrino M, Qi H, Rizza P, et al. In vivo and in vitro evidence that PPARgamma ligands are antagonists of leptin signaling in breast cancer. Am J Pathol. 2011;179:1030–40. https://doi.org/10.1016/j.ajpath.2011.04.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Du R, Lin L, Cheng D, Xu Y, Xu M, Chen Y et al. Thiazolidinedione therapy and breast cancer risk in diabetic women: a systematic review and meta-analysis. Diabetes Metab Res Rev 2018;34. https://doi.org/10.1002/dmrr.2961.

    Article  Google Scholar 

  202. Islam MM, Yang HC, Nguyen PA, Poly TN, Huang CW, Kekade S, et al. Exploring association between statin use and breast cancer risk: an updated meta-analysis. Arch Gynecol Obstet. 2017;296:1043–53. https://doi.org/10.1007/s00404-017-4533-3.

    Article  CAS  PubMed  Google Scholar 

  203. Mansourian M, Haghjooy-Javanmard S, Eshraghi A, Vaseghi G, Hayatshahi A, Thomas J. Statins Use and risk of breast cancer recurrence and death: a systematic review and meta-analysis of observational studies. J Pharm Pharm Sci. 2016;19:72–81. https://doi.org/10.18433/j3202b.

    Article  PubMed  Google Scholar 

  204. Wu QJ, Tu C, Li YY, Zhu J, Qian KQ, Li WJ, et al. Statin use and breast cancer survival and risk: a systematic review and meta-analysis. Oncotarget. 2015;6:42988–3004. https://doi.org/10.18632/oncotarget.5557.

    Article  PubMed  PubMed Central  Google Scholar 

  205. Lu L, Shi L, Zeng J, Wen Z. Aspirin as a potential modality for the chemoprevention of breast cancer: a dose-response meta-analysis of cohort studies from 857,831 participants. Oncotarget. 2017;8:40389–401. https://doi.org/10.18632/oncotarget.16315.

    Article  PubMed  PubMed Central  Google Scholar 

  206. Zhong S, Chen L, Zhang X, Yu D, Tang J, Zhao J. Aspirin use and risk of breast cancer: systematic review and meta-analysis of observational studies. Cancer Epidemiol Biomark Prev. 2015;24:1645–55. https://doi.org/10.1158/1055-9965.epi-15-0452.

    Article  CAS  Google Scholar 

  207. Zhao YS, Zhu S, Li XW, Wang F, Hu FL, Li DD, et al. Association between NSAIDs use and breast cancer risk: a systematic review and meta-analysis. Breast Cancer Res Treat. 2009;117:141–50. https://doi.org/10.1007/s10549-008-0228-6.

    Article  CAS  PubMed  Google Scholar 

  208. Ackerman SE, Blackburn OA, Marchildon F, Cohen P. Insights into the link between obesity and cancer. Curr Obes Rep. 2017;6:195–203. https://doi.org/10.1007/s13679-017-0263-x.

    Article  PubMed  Google Scholar 

  209. Wright CM, Moorin RE, Chowdhury EK, Stricker BH, Reid CM, Saunders CM, et al. Calcium channel blockers and breast cancer incidence: an updated systematic review and meta-analysis of the evidence. Cancer Epidemiol. 2017;50:113–24. https://doi.org/10.1016/j.canep.2017.08.012.

    Article  PubMed  Google Scholar 

  210. Sperati F, Vici P, Maugeri-Sacca M, Stranges S, Santesso N, Mariani L, et al. Vitamin D supplementation and breast cancer prevention: a systematic review and meta-analysis of randomized clinical trials. PLoS One. 2013;8:e69269. https://doi.org/10.1371/journal.pone.0069269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Lazzeroni M, Gandini S, Puntoni M, Bonanni B, Gennari A, DeCensi A. The science behind vitamins and natural compounds for breast cancer prevention. Getting the most prevention out of it. Breast. 2011;20(Suppl 3):S36–41. https://doi.org/10.1016/s0960-9776(11)70292-2.

    Article  PubMed  Google Scholar 

  212. Zhang YF, Shi WW, Gao HF, Zhou L, Hou AJ, Zhou YH. Folate intake and the risk of breast cancer: a dose-response meta-analysis of prospective studies. PLoS One. 2014;9:e100044. https://doi.org/10.1371/journal.pone.0100044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Dimitrakopoulou VI, Tsilidis KK, Haycock PC, Dimou NL, Al-Dabhani K, Martin RM, et al. Circulating vitamin D concentration and risk of seven cancers: Mendelian randomisation study. Bmj. 2017;359:j4761. https://doi.org/10.1136/bmj.j4761.

    Article  PubMed  PubMed Central  Google Scholar 

  214. Gianfredi V, Vannini S, Moretti M, Villarini M, Bragazzi NL, Izzotti A, et al. Sulforaphane and epigallocatechin gallate restore estrogen receptor expression by modulating epigenetic events in the breast cancer cell line MDA-MB-231: a systematic review and meta-analysis. J Nutrigenet Nutrigenomics. 2017;10:126–35. https://doi.org/10.1159/000480636.

    Article  CAS  PubMed  Google Scholar 

  215. Khan S, Shukla S, Sinha S, Meeran SM. Role of adipokines and cytokines in obesity-associated breast cancer: therapeutic targets. Cytokine Growth Factor Rev. 2013;24:503–13. https://doi.org/10.1016/j.cytogfr.2013.10.001.

    Article  CAS  PubMed  Google Scholar 

  216. Catalano S, Leggio A, Barone I, De Marco R, Gelsomino L, Campana A, et al. A novel leptin antagonist peptide inhibits breast cancer growth in vitro and in vivo. J Cell Mol Med. 2015;19:1122–32. https://doi.org/10.1111/jcmm.12517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Leggio A, Catalano S, De Marco R, Barone I, Ando S, Liguori A. Therapeutic potential of leptin receptor modulators. Eur J Med Chem. 2014;78:97–105. https://doi.org/10.1016/j.ejmech.2014.03.048.

    Article  CAS  PubMed  Google Scholar 

  218. Rene Gonzalez R, Watters A, Xu Y, Singh UP, Mann DR, Rueda BR, et al. Leptin-signaling inhibition results in efficient anti-tumor activity in estrogen receptor positive or negative breast cancer. Breast Cancer Res. 2009;11:R36. https://doi.org/10.1186/bcr2321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Otvos L Jr, Kovalszky I, Olah J, Coroniti R, Knappe D, Nollmann FI, et al. Optimization of adiponectin-derived peptides for inhibition of cancer cell growth and signaling. Biopolymers. 2015;104:156–66. https://doi.org/10.1002/bip.22627.

    Article  CAS  PubMed  Google Scholar 

  220. Bai J, Liao C, Liu Y, Qin X, Chen J, Qiu Y, et al. Structure-based design of potent nicotinamide phosphoribosyltransferase inhibitors with promising in vitro and in vivo antitumor activities. J Med Chem. 2016;59:5766–79. https://doi.org/10.1021/acs.jmedchem.6b00324.

    Article  CAS  PubMed  Google Scholar 

  221. Nimptsch K, Pischon T. Obesity Biomarkers, metabolism and risk of cancer: an epidemiological perspective. Recent Results Cancer Res. 2016;208:199–217. https://doi.org/10.1007/978-3-319-42542-9_11.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Dalamaga.

Ethics declarations

Conflict of Interest

Gerasimos Socrates Christodoulatos, Nikolaos Spyrou, Jona Kadillari, Sotiria Psallida, and Maria Dalamaga declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Metabolism

GS Christodoulatos and N Spyrou have contributed equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christodoulatos, G.S., Spyrou, N., Kadillari, J. et al. The Role of Adipokines in Breast Cancer: Current Evidence and Perspectives. Curr Obes Rep 8, 413–433 (2019). https://doi.org/10.1007/s13679-019-00364-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13679-019-00364-y

Keywords